Полезно знать:

Скачать прайс-лист
Расчет дождевых стоков с кровли
Калькулятор расчета объема ливневых стоков - помощь в проектировании ливневки
Ливневая канализация – одна из важнейших систем оборудования жилого участка, о которой, к сожалению, многие хозяева просто забывают или же относятся к ней слишком легкомысленно. И совершенно напрасно – надежды на то, что дождевая или талая вода уйдет сама собой, нередко приводят к постепенному заболачиванию территории, к разрушению или провалам уложенных дорожек и площадок, к размыванию и эрозии конструкций фундаментов возведённых построек, переувлажнению их стен и другим негативным последствиям.

Калькулятор расчета объема ливневых стоков
Ливневая канализация включает немало различных элементов, отвечающих за конкретный участок сбора воды, за несколько таких участков или за всю систему в целом – это дождеприемники, трубы, колодцы, коллекторы. Чтобы они были в состоянии справиться со своей задачей, их параметры должны соответствовать предполагаемым объемам воды. И при проведении планирования системы может оказаться полезным калькулятор расчета объема ливневых стоков, предлагаемый вниманию читателя.
Ниже, под калькулятором, будет дано краткое пояснение по принципу его работы.
Калькулятор расчета объема ливневых стоков
Перейти к расчётам
Пояснения по проведению расчетов
Итак, для планирования каждого отдельного участка ливневой канализации необходимо знать, какой объем воды может на него выпасть. Далее, отдельные участки через дождеприемники и трубы связываются с колодцами, обслуживающими уже несколько таких зон — и так далее, до «вершины иерархии», то есть ливневого коллектора или главного накопительного колодца. Естественно, при этом показатели отдельных участков или групп суммируются. Но в основе расчета, так или иначе, лежит каждый отдельный участок сбора.
Объем воды, подлежащий сбору с отдельно взятого участка, можно выразить упрощенной формулой:
Qсб= q20 × F× ϒ
Qсб — общий объем сбора ливневой воды с участка.
q20 — табличный коэффициент, показывающий среднестатистическую интенсивность осадков в данном регионе, в зависимости от климатических условий. Подобными величинами обязательно оперируют все местные строительные, проектировочные, метеорологические организации – узнать его несложно. Другой вариант – воспользоваться картой схемой, расположенной ниже. Этот показатель выражается в литрах в секунду на гектар.

Карта-схема для определения коэффициента интенсивности осадков q20
F — площадь участка сбора воды, выраженная в гектарах. Площадь принимается в плане, то есть если, например, расчёт ведется для скатной кровли, то считается только ее горизонтальная проекция.
Цены на водоотводные каналы
водоотводный канал
Для удобства расчетов в калькуляторе предусмотрен ввод значений в квадратных метрах – пересчет на гектары программа проведет самостоятельно.
ϒ — коэффициент, учитывающий то, что определенная часть воды может впитаться в покрытие. Это табличная величина, значения которой для покрытий, характерных для частного строительства, уже внесены в калькулятор.
Для большего удобства пользователя результат будет представлен в трех величинах: литры в секунду, литры в минуту и кубометры в час.
Устройство ливневой канализации
Цены на водоотводные каналы
водоотводный канал
Проектирование ливневки – это довольно непростая задача, и определением объемов стоков не заканчивается. Подробнее об устройстве и порядке создания ливневой канализации – в соответствующей статье нашего портала.
Расчет ливневых стоков с кровли
Типовой проект жилого дома или промышленной площадки обязательно должен включать расчет ливневой канализации.Необходимые формулы и табличные значения для математических вычислений указаны в своде правил СП 32.13330.2012, который является актуализированной версией СНиП 2.04.03-85. Поскольку непрофессионалу довольно сложно разобраться во всех аспектах данного нормативного документа, ниже представлены общие положения и основные формулы, которые позволят произвести гидравлический расчет ливневой сети самостоятельно.
Обустройство дождевой канализации: правила и рекомендации ↑
Основная цель расчета ливневой канализации – определение диаметра и уклона трубы в соответствии с объемом атмосферных осадков, выпадающих в конкретной местности. При недостаточной пропускной способности трубопровода существенно снижается эффективность канализационной сети, что увеличивает вероятность затопления территории во время обильных дождей.
Система водоотвода – важный элемент любого строительного объекта
Все работы по обустройству ливневой канализации регламентируются СНиП. Помимо гидравлических расчетов, для правильной эксплуатации системы необходимо придерживаться следующих рекомендаций:
- Хозяйственно-бытовые стоки и промышленные отходы не должны отводиться через ливневую канализацию.
- Место выпуска стоков в естественный водоем должно согласовываться с санэпидемслужбой, а также органами охраны водных объектов.
- Поверхностные воды с территории частных хозяйств могут направляться в центральную канализационную сеть без предварительной очистки. Для промышленных предприятий стоки должны обязательно проходить через дополнительные очистные сооружения.
- Возможность приема атмосферных осадков с территорий частных и промышленных объектов городской канализацией определяется пропускной способностью центральной сети и производительностью очистных сооружений.
- Отведение поверхностных вод, по возможности, следует организовывать в самотечном режиме.
- Для крупных населенных пунктов и производственных площадок необходимо предусматривать системы водоотвода закрытого типа. Для малоэтажных загородных объектов допускается применение канализационной сети открытого типа.
В частных домах часто комбинируется открытая и закрытая системы отвода дождевой воды
Формулы для гидравлического расчета ливневых сетей ↑
Для того чтобы выполнить расчет диаметра трубы ливневой канализации, следует определить средний расход дождевых вод, который зависит от климатических условий в конкретной местности.
Расход дождевых вод ↑
Предельный расход (интенсивность) дождевых вод рассчитывается по формуле:
Qr = q20·Ψ·F
где:
q20 – расчетная интенсивность дождя в течение 20 минут;
Ψ –коэффициент поглощения влаги определенным типом покрытия (кровля – 1,0; асфальт – 0,95; бетон – 0,85; щебень – 0,4);
F–площадь поверхности(в гектарах), на которой планируется осуществлять водоотвод.
Карта интенсивности дождя для определения коэффициента q20
Расход воды при напорном режиме ↑
Для гидравлического расчета сети дождевой канализации необходимо сделать поправку на коэффициент заполнения свободного трубопровода при возникновении напорного режима (β). Таким образом, расход дождевых вод рассчитывается как
Q = Qr·β
Коэффициент β определяется по таблице:
Показатель продолжительности дождя n | 0,7 | 0,6 | 0,5 | 0,4 |
Значение коэффициента β | 0,65 | 0,7 | 0,75 | 0,8 |
В свою очередь параметрn зависит от географического расположения объекта:
Район | Значение параметра n |
Побережье Баренцева и Белого морей | 0,4 |
Север Европейской части РФ | 0,48 |
Центр и запад Европейской части РФ | 0,59 |
Западный склон Урала | 0,59 |
Низовье Дона и Волги | 0,57 |
Нижнее Поволжье | 0,66 |
Средняя Сибирь | 0,47 |
Восточная Сибирь | 0,52 |
Западная Сибирь | 0,58 |
Алтай | 0,48 |
Побережье Охотского моря | 0,31 |
Если уклон местности составляет 1-3 см на 1 м, тогда коэффициент βнеобходимо увеличить на 15%. При большем уклоне данный параметр принимается равным 1.
Пример расчета ливневой канализации ↑
Некоторые проектировщики не вдаются в детали расчета ливневой канализации, оперируя рекомендуемыми значениями диаметров труб, которые указаны в СНиП. Для безнапорных сетей в качестве водоотвода обычно используют трубопровод диаметром 200-250 мм.
Именно такой размер гарантирует оптимальную скорость движения поверхностных стоков в случае интенсивных осадков.
Вместе с тем правильно выполненный расчет способствует более целесообразному распоряжению бюджетом, поскольку для нормальной функциональности ливневой сетимогут подойти трубы меньшего диаметра.
Расчет диаметра трубы позволяет уменьшить затраты без ущерба для функциональности системы
В качестве примера рассчитаем параметры водосточной трубы для крыши частного дома площадью 100 м² (0,01 га), расположенного в одном из населенных пунктов Московской области:
- Согласно карте интенсивности дождя параметр q20 для Москвы и близлежащих районов составляет 80 л/с. Коэффициент поглощения влаги для кровли равен 1. Исходя из этих данных, рассчитываем расход дождевых вод:
Qr =80·0,01 = 0,8 л/с
- Поскольку уклон кровли в частном доме, как правило, существенно превышает показатель 0,03 (3 см на 1 м), коэффициент заполнения свободной емкости во время напорного режима принимаем равным 1. Таким образом:
Q = Qr = 0,8 л/с
- Зная показатель расхода дождевой воды, можно не только произвести расчет диаметра ливневой канализации, но и определить необходимый уклон стока. Для этого воспользуемся справочником А.Я. Добромыслова «Таблицы для гидравлических расчетов трубопроводов из полимерных материалов. Безнапорные трубопроводы». Согласно расчетным данным, которые представлены в таблицах, для показателя расхода 0,8 л/с подойдут трубы с такими параметрами:
- диаметр 50 мм, уклон 0,03;
- диаметр 63 мм, уклон 0,02;
- диаметр 75 мм (и выше), уклон 0,01.
Уклон трубы обратно пропорционален ее диаметру
Строительство ливневки: практические советы ↑
СНиП допускает использование труб из асбестоцемента, стали и пластика (ПВХ). Асбестоцементный трубопровод, хоть и является экономичным вариантов, сегодня применяется достаточно редко из-за хрупкости материала и большого веса (1 метр 100-миллиметровой трубы весит 24 кг). Стальные трубы значительно легче асбестовых, тем не менее они склонны к коррозии. Поэтому дляливневок чаще всего используютсятрубы из ПВХ, которые совмещают в себе малый вес, простоту монтажа и длительный срок эксплуатации.
- Глубина прокладки подземной части.
Оптимальное расположение трубы – ниже уровня промерзания грунта и выше уровня грунтовых вод. Поскольку не каждая местность позволяет соблюсти данное условие, допускается прокладка трубопровода на небольшой глубине, однако не ближе 70 см к поверхности.
Отвод дождевой воды с крыши осуществляется посредством стояков, под которыми размещаются точечные или линейные дождеприемники. Вертикальные водоотводы крепятся к стене с помощью хомутов. Расчет интервала крепления стояков ливневой канализации выполняется с учетом материала трубы. Для ПВХ хомуты размещаются с интервалом 2 м, для стали – 1-1,5 м.
СНиП предусматривает организацию так называемых охранных зон вблизи расположения ливневой сети. На расстоянии менее 3 м от трубопровода запрещено возводить строительные объекты, сажать кусты и деревья, устраивать свалку мусора, обустраивать парковочное место.
Типовая схема ливневки частного дома
Проектирование системы отвода дождевой воды является важным этапом строительства жилого дома или промышленной площадки.
В данной статье приведены формулы для грубого расчета диаметра трубопровода, поскольку они не учитывают такие параметры, как трение воды о внутреннюю поверхность трубы, количество изгибов и соединений в системе и др.
Для более точного расчета ливневой канализации существуют специальные программы, которые можно найти в интернете. Однако самый верный метод – доверить проектирование специалистам, которые учтут все нюансы и предложат наиболее эффективный и экономически выгодный вариант.
Источник: http://Stroy-Aqua.com/kanalizaciya/drenazh/raschet-livnevoj-kanalizacii.html
Расчет ливневой канализации: примеры
Типовые проекты индивидуального жилого строительства или промышленных площадок подразумевают наличие проектной документации для расчета ливневой канализации. Свод правил СП 32.13330.2012 содержит все необходимые для вычисления формулы, табличные значения и коэффициенты. Так как непрофессионалу, впервые держащему план в руках, не разобраться без помощи, здесь приведена основная информация о том, как провести расчеты и не запутать самого себя еще больше, вычитывая особенности гидравлического расчета ливневого водостока.
Правила и рекомендации по обустройству ливневого водостока
Основная цель, которую преследуют в процессе изучения обустройства канализации – точное вычисление диаметра и уклона трубы, зависящего от объема атмосферных осадков выпадающих в конкретной местности.
Важно! Недостаточная пропускная способность водопровода приводит к существенному снижению эффективности канализационной ветки в целом. А это грозит затоплением прилегающей к дому территории в период обильных дождей.
Обустройство ливневых канализаций строго регулировано и регламентируется СНиП. Запомните, что система водоотвода является важнейшим элементом, независимо от назначения строения.
Советы экспертов по обустройству канализации
Соблюсти гидравлический расчет ливневой канализации мало, чтобы система исправно функционировала, прислушивайтесь к некоторым рекомендациям:
- Для хозяйственно-бытовых стоков и промышленных отходов оборудуют отдельную систему водоотвода.
- Место выпуска стоков в естественные водоемы согласовывается с санэпидслужбой, органами охраны водных объектов.
- Законодательно разрешено направлять поверхностные воды с частных хозяйств сразу в центральную канализацию, не поддавая их предварительной очистке.
- Для промышленных предприятий стоки обязательно пропускают через очистные сооружения.
- Производительность централизованных очистных сооружений и ее пропускная способность определяют возможность слива атмосферных осадков с прилегающих к частным и промышленным объектам территорий.
- При любой возможности старайтесь организовать самотечный режим спуска поверхностных вод.
- Если требуется обеспечить крупную производственную площадку или целый населенный пункт системой водоснабжения, то это, как правило, ветка закрытого типа.
- Малоэтажные и загородные объекты оборудуются канализационными сетями открытого характера.
- Практическое применение получили комбинации из открытых и закрытых систем водоотвода в частном индивидуальном жилом строительстве.
Какими формулами пользоваться для расчета ливневой канализации
Чтобы определить сечение труб водоотвода, рассчитайте расход дождевых осадков, выпадающих в регионе проживания. Этот фактор зависит от климатических и погодных условий.
Подсчеты проводят согласно формуле: Qr = q20YF, где
- q20 обозначает расчетную интенсивность выпадающих осадков на протяжении 20 минут;
- Y — коэффициент поглощения влаги покрытием (1,0 – для кровли, 0,95 – для грунта, 0,85 – для бетона, 0,4 – для щебня).
Как расходуется вода в напорном режиме
При гидравлическом расчете ливневой канализации делают поправку на коэффициент заполнения свободного водостока в случае возникновения напорного режима (b):
Q = Qrb, где b берется из таблицы:
Показатели продолжительности дождя (n) | Значение b |
0,75 | 0,655 |
0,65 | 0,705 |
0,55 | 0,755 |
0,45 | 0,805 |
Важно! Значение n зависит от географического расположения объекта.
Коэффициент n | Район |
0,455 | Побережье Баренцева и Белого моря |
0,595 | Северный регион европейской части России |
0,575 | Низовье рек Дон и Волга |
0,665 | Нижнее Поволжье |
0,475 | Средняя полоса Сибири |
0,525 | Восточная часть Сибири |
0,585 | Западная часть Сибири |
0,485 | Алтайские горы |
0,315 | Побережье Охотского моря |
Важно! при уклоне местности 1-3 см на 1 м, коэффициент b увеличивается до 15%. Если уклон больше, то за показатель принято считать 1.
Ознакомьтесь на примере с расчетом ливневой канализации.
Практический расчет пропускной способности водопровода
Очень часто причиной не функциональности ливневой канализации оказывается пренебрежение проектировщиками деталей расчета. Опираясь на общие указания СНиП, ремонтники и монтажники часто допускают ошибки.
При расчете диаметра ливневой канализации зачастую используются трубы с сечением 200-250 мм. Это оптимальный показатель для беспрепятственного передвижения стоков по трубам. Даже если осадки выпадают с большей интенсивностью.
Важно! Предварительный расчет и закупка необходимых деталей в соответствии с нормами и требованиями способствует снижению затрат без ущерба функциональности сети.
Пример вычисления пропускной способности системы
За площадь придомовой территории возьмем 100 м2, что составляет 0,01 от 1 гектара земли. Предположительно с этой территории будем отводить воду. Допустим, что объект находится в МО.
Исходя из таблицы вычисления определено, что q20 для Москвы и микрорайонов 80 л/с. Коэффициент поглощения влаги для кровли – 1.
Исходя из определенных показателей, расчет дождевой воды выглядит следующим образом: Qr = 80×0,01 = 0,8 л/с.
В 90% случаев уклон кровли превышает 0,03 (>3 см на 1 м), то коэффициент заполнения свободного резервуара во время напорного режима принимаем за 1. Из этого выплывает, что: Q = Qr = 0,8 л/с.
Важно! После определения показателей расчета дождевой воды у вас будет возможность не только выполнить расчет диаметра трубы для ливневой канализации, но и определится с необходимым уклоном стока.
Хорошие рекомендации приведены в справочнике А. Я. Добромыслова «Таблицы для гидравлических расчетов трубопроводов из полимерных материалов. Безнапорные трубопроводы». Здесь начинающий мастер найдет расчетные данные, представленные в форме таблиц. Определенно ясно, что для показателя расхода, равного 0,8 л/с, подойдет труба с таким диаметром и уклоном:
Важно! Запомните, что уклон труб – это обратно пропорциональное диаметру значение.
Практичные советы по строительству ливневки
Нетрудно догадаться, что конструирование начинается с подбора и закупки материала. И здесь главное — не ошибиться в выборе, ведь иначе вся работа пойдет насмарку.
Какой материал подойдет для трубопровода
Согласно СНиП, допустимо использование асбестоцементных, стальных и пластиковых (ПВХ) труб.
Асбестоцементные трубы хоть и применяются, но очень редко. Это экономичный вариант, но материал отличается хрупкостью и большим весом (1 м трубы с сечением 100 мм весит не меньше 25 кг).
Стальной водопровод окажется легче, но и здесь есть свое но! Металл склонен к коррозии.
Потому предпочтительнее изделия из ПВХ пластика. Совмещающие в себе небольшой вес, возможность эксплуатации на протяжении долгого времени, простоту монтажа.
Особенности глубины прокладки
При конструировании и расчете очистных сооружений ливневой канализации учитывают и грунтовые характеристики, в том числе и уровень промерзания почвы. Оптимальное расположение трубы – ниже черты промерзания грунта, но над подземными грунтовыми водами. Эти условия соблюдать нелегко из-за неравномерного ландшафта местности, потому определено, что труба должна находиться не меньше чем на 70 см к поверхности земли.
Принцип монтажа стояков
Ливневую канализацию невозможно представить без стояков с подключенными к ним точечными/линейными дождеприемниками, вертикальное крепление которых выполняется при помощи хомутов.
Важно! Заметьте, что подсчет интервала крепления стояков ливневой канализации проходит в зависимости от типа используемого материала. Если это ПВХ, то хомуты крепят через каждые 2 метра, если сталь – 1,35 м.
Охранная зона
В СНиП предусмотрена организация «охранных зон» в близкой удаленности от ливневки. Запомните, что от объекта строительства, сада, парка, свалки, парковки к канализации должно быть не меньше 3 м.
Проектирование — это важнейший этап всей системы обустройства и расчета труб для ливневой канализации независимо от типа строения.
Здесь собраны основные формулы, которые пригодятся при проведении расчетов и умельцу, и новичку. Но этот метод могут оказаться ложным, если присутствуют специфические условия монтажа (рН воды, кислотность почвы, количество изгибов и поворотов по всей длине канализации). Самое верное решение – доверить работу специалистам, которые в ходе гидравлического расчета ливневой канализации на примере просчитывают каждую мелочь. Этот вариант отличается эффективностью и экономичностью.
Многие задают вопрос о том, почему городские водостоки не справляются с отводом воды, и весь населенный пункт превращается в настоящее полынье.
Пренебрегая рекомендациями по расчету водоотводов в индивидуальном жилом строительстве, человек восполняет один из факторов, способствующий неправильному функционированию всей водосточной центральной системы.
Дальше на местах основных узлов недобросовестные мастера, стараясь сэкономить, пренебрегают тем же, подвергая риску незамедлительного сбоя в работе всей городской сети. Потому и образуются пробки, засоры, низкая пропускная способность системы, подтопление.
Понимание того, что расчет канализации — важный фактор, и без его восполнения не обойтись, избавит от ряда распространенных проблем. Главное — делать все правильно, и канализация будет исправно работать.
Источник: http://fb.ru/article/365618/raschet-livnevoy-kanalizatsii-primeryi
Расчет ливневой канализации и дождевых стоков: пример
Возведение загородного строения требует определенного внимания к садовому дренажу на прилегающем участке. Именно проектирование ливневой канализации, правильный расчет отвода дождевых вод позволит избежать угрозы подмывания и обрушения фундамента, заболачивания почвы и прочих неприятностей.
Контроль водного баланса включает оборудование системы колодцев, труб, дождеприемников, лотков и других элементов. Благодаря наличию системы, пользователь сможет не только продлить время служения строения, но и всех дорожных покрытий на участке.
Более того, отвод дождевых вод с территории, кровли в накопительную емкость – отличная возможность применять талые скопления на полив огорода, что экономически выгодно и удобно.
Вводные понятия
Расчет ливневой канализации не всегда требует помощи профессионалов
Расчет ливневой канализации не всегда требует помощи профессионалов, все можно сделать своими руками, особенно, если требуется водоотвод для дождевых вод не промышленного, а бытового масштаба. Рассмотрев пример расчета, позволительно сооружать конструкции для предприятия, собственных частных строений, а также создания ливневок на других территориях.
Методика просчета затрагивает:
- данные ландшафтных, геологических особенностей площадки,
- строительную специфику сооружений,
- расположение инженерных коммуникаций,
- средний показатель выпадения осадков;
- материалы, которые будут использоваться для сооружения конструкций.
Продумывая ливневку для предприятия, необходимо также учитывать проходимость, площадь территории, наличие подъездных пандусов и прочих конструкций. Общее обустройство системы водоотведения проводится сразу после определения нужных параметров ливневки.
Основные аспекты расчетов, пример
Первый этап сооружения канализации для оттока дождевых вод с территории предприятия, участков включает определение наибольшего объема вод
Первый этап сооружения канализации для оттока дождевых вод с территории предприятия, участков включает определение наибольшего объема вод, с которыми конструкции придется справляться.
Важно! Вычисляется формулой: V = g20*S*D в которой V – наивысший показатель расхода потоков в водоотводе, а g20 – интенсивность атмосферных осадков, S – площадь территории предприятия, кровли, участка, а D – коэффициент водопоглощения.
Для облегчения расчетов, стоит воспользоваться приведенной таблицей, где указаны виды материалов и показатели водопоглощения:
- кровля – 1.0;
- асфальтобетон – 0,95;
- цементобетон – 0,85;
- щебень – 0,4;
- щебень с битумом – 0,6.
Прочие показатели интенсивности впитывания дождевых вод можно найти в СНиП, но стоит принимать во внимание значения для определенной местности.
После того, как пример расчета покажет точные характеристики, обязательные для системы, предстоит просмотреть и выбрать сечение труб. Снова все зависит от объема потоков дождевых вод, однако, за пример можно взять следующие таблицы:
Уклон/диаметр мм | 100 | 150 | 200 |
0-0,3 | 3,89 | 12,21 | 29,82 |
0,3-0,5 | 5,02 | 15,76 | 38,5 |
0,5-1,0 | 7,1 | 22,29 | 54,45 |
1,0-1,5 | 8,69 | 27,31 | 66,69 |
1,5-2,0 | 10,03 | 31,53 | 77,01 |
Важно! При выборе основы обустройства конвертного способа, параметры стояка определяются посредством суммы объема общих расходов всех потоков.
Расчет ливневых стоков требует внимания к расположению уклона. Если трубы берутся с сечением до 0,2 м, показатель примерно эквивалентен 0,007 м. Диаметр труб для системы отвода дождевых, талых вод с территории предприятия или загородного дома, показателем не более 0,15 м требует уклона не менее 0,008 м.
Внимание! Если данный стандарт невозможен для реализации, то нормативы снижаются до 0,007 для сечения 150 мм, и до 0,005 для сечения трубопровода в 200 мм.
Как показывает пример формулы расчета, уклон не будет слишком неровным, а на коротких участках трубопровода можно не делать уклон, если рельеф местности не позволяет выполнить даже минимального снижения уровня.
Важно! Обустройство конструкции водоотведения открытого типа требует показателя уклона 0,003 м. Это идеальный размер для водоотводной канавы, а также лотков шоссе, где покрытием выступает асфальтобетонная смесь. В случае щебневого покрытия или брусчатки, показатель уклона возрастает до 0,004. Булыжные мостовые или территории предприятия также увеличивают показатель до 0,005. То же самое касается отдельно размещенных лотков.
Анализ данных требований подсказывает, что на уклон оказывает воздействие шероховатость, поэтому при серьезном уровне данного показателя, придется обустраивать достаточный угол. Также влияет размер сечения труб (их нужно выбирать по показателю объема выпадающих дождевых вод): чем больше сечение, тем меньший уклон нужно делать.
Чем больше сечение трубы, тем меньший уклон нужно делатьА чтобы все формулы были как можно более понятны, просмотрите пример расчетов. За параметры по умолчанию принимаются:
- участок в 15 соток (1500 м2);
- расположение на участке газонов и клумб, занимающих 300 м2.
Итак, газон и клумбы уже будут впитывать потоки дождевых вод, только если участок не имеет серьезного наклона. Расчеты водоотводящей конструкции берет во внимание коэффициент водопоглощения: кровля обладает более внушительным показателем чем земля, поэтому 300 м2 не включаются в расчеты.
Определение объема воды, поступающей на 1200 м2 также будет по стандартным показателям – максимально 25л/1м2 час. Получается, что на 1200 м2 выпадает примерно 30м3. Цифра в примере определяет величину объема дождевых вод, которые придется отводить, поэтому труба с сечением 110 мм и уклоном в 10 мм на 100 см не совсем подходит. Пропускная способность трубы составит не более 6,19 л/сек или 22200 л/час, а вот труба диаметром в 160 мм при том же расчете уклона, будет идеальной.
Простой пример расчетов отвода дождевых потоков с территории, кровли показывает, что все можно сделать самостоятельно. Но не стоит забывать про некоторое количество лотков для ливневки. Также для обустройства дренажного трубопровода на ровных площадях иногда требуется гидравлический насос, обеспечивающий быстрое отведение потоков из лотков, а также транспортировку воды по трубопроводу.
Источник: https://vodakanazer.ru/kanalizaciya/livnevaya-kanalizaciya/raschet-livnevoj-kanalizacii-primer.html
Расчет расхода дождевых вод
В зависимости от того, в каком регионе вы живете, вы можете наблюдать более обильные или менее обильные осадки. И это неудивительно, ведь разные регионы имеет различное географическое положение, что и влияет на количество осадков в течение года. Сегодня существуют различные формулы, с помощью которых можно рассчитать объем стоков для кровли, однако для чего это может понадобиться?
Помните о том, что частота осадков, а также их обильность зависит от региона, в котором вы проживаете.
Расчет ливневых стоков
И в первую очередь необходимо поговорить о том, что же такое ливневый сток. Сегодня данным термином принято называть воду, которая была образована в ходе таянья снега или же после дождя. Такая вода должна попадать в специальный стояк, а затем в канализацию.
Для чего же необходимо делать расчет дождевых вод? Если у вас автономная канализация, то формулы помогут вам рассчитать объем принимающей жидкости.
Если вы делаете расчёт пропускной способности трубы для какого-либо предприятия, то этот параметр регулируется специальными нормами — СанПиН.
Сегодня существует две основные формулы для расчёта ливневых вод с крыш домов. Они изложены в СанПиН. Однако при расчёте пропускной способности с помощью первой формулы, вы увидите, что цифры будут значительно отличаться в большую сторону.
В первом случае вам необходимо умножить объем осадков на площадь кровли. Во внешней формуле вы можете увидеть различные коэффициенты, именно благодаря им конечный результат становится немножко меньше, чем у первой формулы.
Мы советуем вам производить все расчёты по формулам, которые приведены в СНиП 2.04.01-85.
Формулы для расчетов
Если вы производите сбор дождевой воды для хозяйственных нужд, то необходимо заготовить для этого специальную емкость.
- Если уклон крыши меньше, чем 1,5%, то используем эту формулу — Q=Fq20 / 10000;
- Если уклон крыши больше, чем 1,5%, то используем эту формулу — Q=Fq5 / 10000;
Если к зданию, для которого ведётся расчёт воды собранной с крыши, примыкают стены, то необходимо брать в расчет и их. Необходимо подставить в формулу площадь крыши и еще 30% от общей площади таких стен.
Как только вы сделали все расчеты, а также посчитали объем дождевых и талых вод, можно переходить к подбору необходимого диаметра трубы. Это поможет перестраховаться и не получить диаметр трубы меньше, чем это необходимо для обеспечения нормальной пропускной способности канализации.
Существует 2 метода, которые позволяют отводить дождевую воду с поверхности крыши.
Если же у вас плоская крыша на доме, то вам необходимо использовать метод точечного отведения. Другие методы для вашего здания являются недоступными. В данном случае сливные воронки находятся непосредственно у крыши, вода по крыше под наклоном стекает в них. А далее она попадает в водоотводную систему.
Линейное отведение воды предполагает стекание воды с крыши, а затем ее попадание в водоприемный желоб. Вода после этого сбрасывается в специальную систему водоотвода. Затем отвод воды обеспечивается с помощью внешней дождевой канализации, если таковая отсутствует, то необходимо устанавливать дождевые лотки во дворе.
Если вы используете автономную систему канализации, то вы с легкостью можете собирать дождевую воду и затем использовать ее для хозяйственных нужд. Однако для этого необходимо оборудовать специальную емкость, а также установить на неё систему перелива.
Какой метод лучше?
Использование точечного отведения воды возможно лишь на плоских крышах, на таких крышах, как правило, заранее проектируется внутренний сток, он находится посредине крыши. На таких крышах кровельные плоскости должны быть выполнены с наклоном, чтобы вода могла с них стекать. На приемной трубе водостока установлены специальные лотки, куда движется вода. Также необходимо установить не менее двух воронок на крыше.
Что же касается линейного отведения стоков, то оно возможно на скатных крышах. Для такого вида крыш необходимо использовать внешние водосточные трубы, а также можно обустроить их внутренним водостоком, всё зависит от желания хозяина здания. Если система сбора ливневых вод будет устанавливаться на сложной крыше, то в местах соединения двух поверхностей необходимо образовать специальный желоб, он называется «ендова». С помощью него ливневая вода будет попадать в водосток.
Также необходимо правильно рассчитать расстояние между воронками. Каждая воронка устанавливается на расстоянии не более 48 м друг от друга. Причём в данном случае не берется в расчет ни площадь крыши, ни ее тип. Этот параметр является стандартным для каждого вида отвода воды.
Выбирать тот или иной метод отвода дождевых вод необходимо в зависимости от того, какая у вас крыша. Если у вас крыша скатная, то подойдёт первый метод, если же крыша у вас плоская, то здесь только точечный отвод необходим. Также вам необходимо выбирать в зависимости от ваших возможностей, ведь одна система отвода воды будет стоить дороже, другая — немного дешевле.
После проведения всех необходимых расчетов вам также необходимо разобраться с тем, куда же девать полученную воду. И существует несколько вариантов. Вы можете сливать такую воду в канализацию. Также вы можете использовать данную воду для хозяйственных нужд, что является хорошей альтернативой водопроводной воде.
Источник: https://voday.ru/vidy-vody/dozhdevaya/raschet-raskhoda-dozhdevykh-vod.html
Расчет ливневых стоков с территории участка
1. Назначение и устройство ливневки
2. Классификация системы по методу сбора стоков 3. Проектирование системы и расчет ливневых стоков с территории 4. Данные для расчетов 5. Вычисление объема ливневых стоков 6. Глубина закладки водоотводных каналов 7. Стандарты и нормы уклона 8. Монтаж ливневой канализации 9. Обустройство ливневки на крыше
10. Монтаж подземных коммуникаций Плохое качество сборки ливневой канализации всегда дает о себе знать: во дворе появляются лужи, мешающие ходить, на голову постоянно капает вода, стоит только выйти за порог, а переоценить степень негативного влияния на фундамент здания практически невозможно. В результате жизнь в частном доме будет крайне некомфортной и проблематичной.
Расчет ливневой канализации - алгоритм и онлайн-калькулятор

Создать действительно эффективную систему сбора и отвода дождевой воды – задача непростая. И, безусловно, требующая тщательного проектирования с учетом специфики участка, на котором она создаётся. Как правило, этим занимаются специалисты, в особенности если речь идет о территориях большой площади, о ливневках в населенных пунктах, на крупных объектах и т.п. Но на небольшом загородном участке можно попробовать провести и самостоятельный расчет ливневой канализации. А затем, на базе полученных показателей, спланировать размещение всех элементов системы и воплотить задуманное в реальность.
Но не будем пока забегать вперед – остановимся именно на расчёте ливневки.
Важность ливневой канализации и основные элементы системы
Можно ли обойтись без ливневки?
Прежде давайте вспомним назначение ливневой канализации, а также то, из каких основных элементов она обычно строится. Без понимания структуры этой системы подходить даже к предварительным наброскам – совершенно бессмысленное занятие.
Итак, ливневая канализация должна рассматриваться как обязательный элемент всей инженерной инфраструктуры участка. В идеале она должна распространяться не только на области застройки или облагороженного двора, но даже на ту часть территории, что отведена под ландшафтный дизайн или под «сельхозугодья».
Задача этой системы – организованно и в кратчайшие сроки собрать с обслуживаемой территории основные объемы воды, выпавшей дождем или образовавшейся в ходе таяния снега, отвести их в безопасное место, при необходимости – подвергнуть очистке, и затем – сбросить или в природный водоем, или в коллектор или иное хранилище.

Очень глупо надеяться на то, что выпавшая дождём вода «рассосётся и разойдётся» сама собой. Практика частного домостроения изобилует историями, когда пренебрежение к проблемам ливневой канализации оборачивалось очень серьёзными последствиями. Последствия могут коснуться очень многих сфер: от «банальщины», вечной сырости и грязи во дворе — до надежности капитальных построек, от разрушения дорожек и площадок — до плохой приживаемости или даже гибели высаживаемых растений. И это только так – навскидку…
Мало пользы будет от такой канализации, если она создавалась «на глаз» — велика вероятность, что она не будет справляться со своими обязанностями при сильном или затяжном дожде. Получается, затраченные деньги – на ветер. Другая крайность, когда система строится с огромным, никому не нужным «запасом», что оборачивается совершенно неоправданным усложнением проекта, и значительным удорожанием и материалов, и выполняемых работ.
Это говорится в пользу того, что создание ливневки должно предваряться планированием.
Никогда не следует пытаться «примерить» готовый проект на свой участок. И не имеет никакого смысла искать какую-то универсальную модель ливневки. Все зависит от особенностей участка, его площади, от местных климатических условий, от состояния грунтов, от того, что же планируется возвести на рассматриваемой территории, и от того, как эти объекты будут в дальнейшем эксплуатироваться, от наличия возможности свободного сброса собранных ливневых стоков и от многого другого.
Но при всем этом ливневки строятся из сходных элементов. Каждый из этих элементов (участков) системы выполняет определённые функции.
Основные элементы системы ливневой канализации
Уже из предназначения ливневой канализации должно быть понятно, из каких основных узлов она должна состоять. Выпавшие на территорию осадки нужно каким-то собрать, переместить сначала в промежуточные, а затем в основные точки накопления, подвергнуть очистке, а затем или сбросить тем или иным безопасным образом, или аккумулировать в каком-то вместительном резервуаре для последующего использования.
Каждый из элементов и узлов ливневки, безусловно, заслуживает подробного рассмотрения в отдельной публикации. Так, скорее всего, вскорости и будет на нашем портале. А пока – ограничимся лишь кратким обзором.
Водосточная система
Да, организованный сбор воды с крыши зданий, то есть всем нам знакомая водосточная система (кровельного водосбора) – тоже должна рассматриваться, как одна из важнейших составляющих ливневки.

Она включает:
- собственно, кровельные поверхности водосбора с надежной гидроизоляцией, имеющие уклон для стока воды в определённом направлении. Это, кстати, касается и плоских кровель – небольшой уклон в сторону водосборника все равно делается;
- точки первичного водосбора. Чаще всего используются желоба, размещенный вдоль карнизных свесов кровли. На плоских кровлях могут быть точечные дождеприемники, к которым как раз и организуется искусственно небольшой уклон;
- водосточные трубы, по которым собранная вода организованно транспортируется в основную нижнюю часть системы ливневой канализации. Трубы с соответствующими воронками чаще размещаются снаружи, крепятся к стенам здания. При расстановке труб обычно исходят их правила их размещения по углам. Но с таким расчётом, чтобы расстояние между соседними воронками и трубами не превышало максимума в 10 метров.
Узнайте, как сделать канализацию из бетонных колец своими руками, из нашей новой статьи.
Реже – водосточные трубы бывают скрыты внутри строения (больше это характерно для плоских кровель).
- Наконец, водосточные трубы должны «отдать» воду в ливневку. По уму – сразу под их обрезом размещаются дождеприемники или лотки, или даже труба полностью входит в этот дождеприемник. Упрощенный вариант – в непосредственной близости от водосточной трубы имеется какой-то водосборник (обычно линейный), и к нему создан уклон.

Бывает, что на некоторых постройках и вовсе прибегают к «стихийной» схеме – вода с кровли стекает прямо на землю, и уже потом собирается в дождеприемники ливневой канализации. Правда, для этого, чтобы не сырели стены здания, ширину карнизного свеса кровли рекомендуется делать увеличенной, никак не менее 600 мм.
Дождеприемники
Чтобы выпавшая дождем или образовавшаяся в ходе таяния снега вода попала в каналы ливневки, понятно, для этого на поверхности земли должны быть какие-то приёмные устройства. Отсюда и нехитрое название эти элементов системы – дождеприёмники.
Сразу оговоримся, что система приема воды может строиться по линейному или точечному принципу.
- Линейный принцип свойственен ливневкам или их отдельным участкам открытого типа. В роли приемников используются желоба (лотки), прикрытые сверху решеткой – в целях безопасности, эстетичности и для фильтрации крупного мусора.

Естественно, при укладке желобов соблюдается необходимый уклон. Причем, это и уклон поверхности в сторону желоба, и уклон самого лотка в сторону водосборного колодца или трубы. Так, чтобы вода самостоятельно, только под действием сил гравитации, свободно перемещалась в нужном направлении.

Эта система в организации выглядит попроще (значительно меньше земляных работ), хотя и имеет массу вполне очевидных недостатков.
- Точечный принцип, когда сбор воды осуществляется через дождеприемники, наподобие тех, о которых уже говорилось выше в связи с водостоками.

Они могут расставляться и в других местах, например, в приямке у входа в дом или другое здание. Или даже просто на территории в определенном порядке для сбора воды с некоторой площади участка. К ним в таких случаях обычно делаются уклоны в виде «конверта», чтобы вода стекала к этой точке.
Между собой точечные дождеприёмники связываются системой подземных труб. С одной стороны – хорошо, так как ливневка получается скрытой, незаметной. Но работ по ее созданию станет намного больше.

Если посмотреть на уже реализованные проекты ливневых канализаций на индивидуальных загородных участках, то можно увидеть, что чаще всего применяются комплексные схемы. То есть сочетание линейного и точечного принципа.

Понятно, что лотки, и точечные дождеприемники, и закрывающие их решётки должны обладать целым рядом важных качеств, обусловленных особенностями эксплуатации этого участка системы. Это – способность выдерживать и значительные механические нагрузки, и негативное внешнее воздействие «погодного» плана — перепады температур, влажность, химическая агрессия выпадающей воды и т.п.
Каждый дождеприемник или лоток обладает определенной пропускающей способностью. То есть через него в единицу времени может пройти какое-то количество воды. Этот параметр как раз и важен при расчете ливневки.
Трубы для ливневой канализации
Естественно, все элементы системы ливневки должны быть объединены какими-то коммуникациями. Эту роль выполняют проложенные под землёй трубы.

К трубам, эксплуатирующимся в таких условиях, предъявляются свои требования. Упор делается на их химическую стойкость, долговечность, устойчивость в внешней механической нагрузке. Очень важна ровность и гладкость стенок, чтобы в полостях не скапливался мусор, который вполне может туда попасть. А вот особых перепадов температур или какого-то внутреннего барического воздействия особо можно не бояться – вода перемещается самотеком, и скачков давления быть не может по определению.
- Когда-то широко применялись в этих целях асбестоцементные трубы, но сейчас их век, по всей видимости, заканчивается. Они все же довольно тяжелые, хрупкие, с ними больше возни и в транспортировке, и в монтаже.
- Если судить по фотографиям, опубликованным в интернете, чаще всего предпочтение отдается ПВХ-трубам оранжевого цвета. Они широко представлены в продаже вместе со всеми необходимыми фасонными деталями – отводами, тройниками, переходниками и т.п.

- Оптимальным же вариантов с точки зрения удобства монтажа и соответствия всем предъявляемым требованиям являются современные гофрированные полимерные трубы. Они могут быть однослойными и двухслойными. Например, широкой популярностью именно для создания заглублённых в грунт канализационных систем пользуются трубы с внешним гофрированным кожухом из полипропилена и внутренней идеально гладкой поверхностью из полиэтилена низкого давления. Такие изделия обладают определенной степенью гибкости (которая зависит от диаметра), что очень облегчает монтажные работы.
Такие трубы также представлены в большом ассортименте диаметров. К ним тоже предлагаются все необходимые фасонные детали.
Понятно, что пропускная способность трубы зависит от ее диаметра. А чтобы вода свободно перетекала по заданному «маршруту», трубы всегда прокладываются с определенным клоном.
Устройства для очистки ливневых стоков
Не стоит думать, что дождевую воду всегда можно просто так собрать – и слить в водоём или канализационный коллектор. Дело в том, что она увлекает за собой горы мусора и различных загрязнений, в том числе нередко – химического характера.
Так что для того, чтобы получить разрешение на сброс собранной воды, надо подвергнуть ее очистке. Для владельцев загородных участков это бывает не столь актуально (хотя определенная очистка должна быть в любом случае), а вот для даже совсем небольших компаний, и особенно – занимающимся обслуживанием автомобильной техники, очистка таких стоков превращается в немалую и весьма дорогостоящую проблему.
Но оставит это пока в сторону – здесь требуется отдельное рассмотрение. А мы пока просто глянем, без чего не может обойтись даже самая простая ливневка.
- В каналы ливневки не должен попадать крупный мусор, иначе она забьётся в рекордно короткие сроки. Это значит, что любой дождеприёмник, точечный или линейный, должен в обаятельном порядке оснащаться решеткой. Она поможет отфильтровать из воды палую листву, какие-то обрывки бумаги или пластика, ветки, прочий крупный мусор.

В комплект многих современных моделей дождеприемников входит еще и корзина, устанавливаемая внутри. Она «доловит» тот мусор, которому удастся проскочить через верхнюю решетку.

Естественно, за состоянием и верхних решёток, и корзин хозяева участка должны постоянно следить. Если они зарастут мусором, ливневая канализация просто не сможет работать.
- Попавшая с земли в дождеприемники вода всегда несет собой мелкие нерастворимые частички – песчинки и другой твердый мелкий мусор. Естественно, решетки или сетки здесь подмогой не станут. Но зато с задачей хорошо справляются пескоуловители или попросту – песколовки.
Конструкция их может быть разной, но наиболее распространена та, что показана для примера на иллюстрации ниже:

Как можно увидеть, такая песколовка может врезаться как в поверхностные лотки, так и в заглубленные в грунт трубы. Смысл ее работы прост – за счет резкого увеличения объема скорость потока замедляется, что способствует оседанию нерастворимых частиц на дно.
Кстати, такие, как на рисунке, песколовки очень хорошо подходят и в качестве соединительных деталей конструкции ливневки. Например, при изменении направлении лотка или труб. Или при стыке нескольких участков в одной точке – выполняют своеобразную роль «тройника». Или при переходе от поверхностных желобов к подземной трубе. Одним словом, способны выполнять роль «мини-колодца».
- Если собираемая вода, как правило, имеет сильное загрязнение отходами нефтепродуктов (а ошибиться в этом сложно – характерные радужные пятна видны невооруженным глазом), то рекомендуется установка бензомаслоотделителя. Тем более, если воду планируется использовать, например, в технических целях или для полива огорода.

Правда, это довольно дорогое устройство, требующее профессиональной установки и регулярного обслуживания. Но иногда деваться некуда, так как в ряде случаев санэпиднадзор может запретить сброс собираемой дождевой воды без подобной очистки.
Но, как правило, это больше касается каких-то производственных или ремонтных компаний. В практике частного загородного жилья – случаи редкие.
Некоторые особенности участка, связанные, скажем, с неблагоприятной экологической обстановкой в регионе, могут потребовать и иных рубежей очистки, например, сорбционных фильтров.
Колодцы
Это – целая группа элементов системы, причем – самого разного предназначения. И важность колодцев в ливневке – сложно переоценить.

Так , колодцы в ливневке ставятся в следующих случаях:
— При переходах диаметров труб с меньшего на больший.
— Там, где под землёй сходится в одной точке два или более потоков воды.

— В точках резкого изменения направления трассы – в вершине получающегося угла.
— В точках, где по тем или иным причинам требуется перейти на другой уклон трубы или на другую глубину ее залегания под землей.
— На прямых участках трассы – через определенные промежутки, дающие возможность проведения ревизий и прочисток при зарастании труб.
Кстати, в качестве колодцев нередко в ливневках используются дождеприемники, составленные по вертикали – в них специально конструктивно предусмотрена такая возможность. Так что не надо полагать, что колодцы обязательно имеют круглое сечение.

Иногда на выходе из ливневой системы оборудуется специальный контрольный колодец, из которого берутся пробы на качество отводимой воды.
Коллекторы, накопительные резервуары, дренажные поля
Собранную воду нужно куда-то деть, хотя бы временно, иначе система переполнится. Собрать в один поток, передать в накопительный резервуар, сбросить в водоём (если это допускает степень очистки) или же в центральный канализационный коллектор.
В любом случае нужен коллектор, в котором сойдутся трубы со всех участков. А это может быть как вместительный колодец (как хранилище) , так и продолженная под землёй труба большого диаметра, по которой вода уходит к конечной точке .
Если используется подземный гидрант, то ему нередко придаётся многокамерная структура, в которой вода проходит дополнительное отстаивание и очистку.

Очень часто ливневую канализацию объединяют с дренажной системой именно общим коллектором. Степень очистки воды здесь — примерно на равных, так что никаких ограничений по этому поводу нет. Сами трубы дренажной канализации располагаются на большей глубине. Оно и хорошо – то, с чем не справилась ливневка, будет добрано дренажом.
Как проводится планирование ливневой канализации?
Самостоятельное планирование возможно исключительно для загородного жилого участка, если на нем не планируется реализация какого-то бизнес-проекта. Смею уверить – в любом другом случае (даже если вы соберетесь всего лишь у себя дома печь булочки на продажу или жарить семечки, не говоря уже об автомойке или мастерской) контролирующие органы потребуют полноценного проектирования.
Ну а для себя – почему бы не попробовать сэкономить хоть на этом, и провести расчеты самостоятельно. Все они, хотя и даются ниже в предельно упрощенной форме, все равно базируются на требованиях СНиП-2.04.03-85 «Канализация. Наружные сети и сооружения».
Основные вопросы, на которые приходится искать ответы при планировании:
- Необходимая производительность отдельных участков ливневки и всей системы в целом.
- Расположение и объемы колодцев.
- Диаметр, угол уклона и глубина расположения труб, связывающих элементы системы.
Давайте разбираться с этими «задачками».
Начать следует с общего планирования ливневки
Проектирование с обычно начинают с изучения плана территории своих владений с имеющимися (или планируемыми) постройками. Задача на этом этапе – определить, локализовать участки, с которых будет собираться дождевая вода, для каждого наметить расположение линейных или точечных дождеприемников. Проложить на создаваемом чертеже трассы труб, по которым собранная вода будет перемещаться. В точка пересечением или объединения, в других упомянутых ранее местах расположить (на схеме пока, конечно) колодцы. То есть составить своеобразную «иерархию» элементов системы.
Например, с тыльного ската кровли вода направляется в дождеприёмник №1. От площадки у гаража вода уходит в лоток №2, эти два потока объединяются в колодце №3. В свою очередь, по пути к коллектору вода из колодца №3 объединяется с потоком из колодца №6 в колодце №9…
И так далее. То есть для каждого участка должна быть проложена трасса движения воды с точками объединения потоков – и так вплоть до самого коллектора.

Для каждой точки сбора просчитывается минимально необходимая производительность (по объемам собираемых дождевых стоков). Понятно, что для точек объединения потоков эта производительность будет суммироваться. По ней как раз и будут подбираться диаметр и уклон труб, вместительность колодцев и коллекторов.
Надеюсь, что планирования принцип понятен. Поэтому можно перейти к расчету объемов воды, собираемой на каждом выделенном участке.
Рассчитываем объем собираемых ливневых стоков
Понятно, что дождь – это стихия не всегда предсказуемая. Тем не менее, по результатам многолетних метеорологических наблюдений все же был составлен алгоритм, позволяющий с довольно большой степенью точности прогнозировать количество атмосферных осадков.
Упрощенно (не для профессионального, а для нашего «бытового» расчета) эту зависимость можно выразить следующей формулой:
Qсб = q20 × S × ϒ
где:
Qсб — объем воды, подлежащий сбору с рассчитываемого участка.
q20— табличный коэффициент интенсивности атмосферных осадков. Требует пояснения:
Эти значения определены для всех регионов страны. То есть несложно уточнить в местной строительной организации или метеослужбе. Не будет большой ошибкой и воспользоваться предлагаемой картой-схемой. Единица измерения, кстати, не вполне привычная – литры в секунду на один гектар площади.

S — площадь участка, для которого проводится расчет. Площадь, кстати, должна быть выражена тоже в гектарах (1 га = 10 000 м²).
При подсчете площади следует иметь в виду, что требуется ее значение «в плане». То есть, например, не площадь ската кровли, а площадь его горизонтальной проекции с учетом угла крутизны. То же самое – для участков территории, расположенных на сильно пересеченной местности, например, на крутом склоне.
Как вычислять площадь – учить читателя не станем. Если уж совсем забылось – можно обратиться к публикации нашего портала, посвященной вычислению площадей крыш.
ϒ — поправочный коэффициент, вносящий коррективы на впитывающие свойства участка. Частично вода станет впитываться в поверхность, то есть не будет собираться ливневкой.
Не будем приводить все многообразие этого коэффициента – возьмем лишь те случаи, что возможны в условиях частного дома:
Водонепроницаемое кровельное покрытие | 1.0 |
Асфальтированная площадка | 0.95 |
Бетонированная площадка | 0.85 |
Щебеночное утрамбованное покрытие | 0.4 |
Грунтовая площадка, газон | 0.35 |
Чтобы не мучить читателя «вычислениями в столбик», тем более что требуется еще и переводить площадь в гектары, предлагаем воспользоваться онлайн-калькулятором. Он, стати, поможет и сразу привести площадь к горизонтальной проекции, если это требуется.
Калькулятор расчета объемов собираемых ливневых стоков
Перейти к расчётам
Определяемся с диаметром и уклоном труб
Трубы соединяющие элементы ливневой канализации, должны успевать отвести собираемые дождеприемниками воду. То есть при самотёчном движении жидкости необходимо расположить трубы определенного диаметра под определенным углом, чтобы достичь оптимальной скорости движения потока без риска переполнения.
Это тоже описывается целым каскадом формул но прозе будет воспользоваться предлагаемой табличкой. В ней – всего три диаметра труб, 110, 150 и 200 мм. Можете не сомневаться, что для ливневки на обычном участке этого – больше чем достаточно.
Ниже, под диаметрами, указана та самая «производительность», то есть просчитываемый объём собираемой воды в единицу времени. А конкретно в этом случае – литров в секунду. По нему несложно определить и оптимальный диаметр трубы, и минимальный угол ее уклона.
3.9 | 12.2 | 29.8 | 0.3 |
5 | 15.75 | 38.5 | 0,3 – 0,5 |
7 | 22.3 | 54.5 | 0,5 — 1,0 |
8.7 | 27.3 | 66.7 | 1,0 — 1,5 |
10 | 31.5 | 77 | 1,5 – 2,0 |
Если труба прокладывается от колодца, в котором сошлись, например, три потока, то общие объемы, естественно, складываются. И так далее — вплоть до коллектора.
Надо сказать, что обычно на среднем загородном участке даже не приходится переходить с одного диаметра труб на другой. Да и угол уклона тоже обычно не «мельчат» до значений, указанных в таблице. Так, для труб диаметром 200 мм обычно дают перепад в 7 мм на погонный метр длины, для диаметра 150 мм – 10 мм перепада, и для 110 мм — 20 мм.
Есть и рекомендуемые нюансы. Так, желательно увеличить уклон между дождеприемником и прямым участком трубы. Это будет способствовать быстрому отводу, чтобы на входе не случилось застоя воды. А вот перед песколовкой или колодцем, наоборот, желательно сделать поток поспокойнее – это поможет лучшему оседанию песчинок, то есть более качественной очистке воды.
Теперь — про заглубление труб. Вообще-то, рекомендуется их опускать ниже на 300 мм глубины промерзания. Всегда ли это возможно? Нет, конечно.
Поэтому встречаются рекомендации придерживаться норматива – не менее 700 мм от поверхности земли. По идее, если система сооружена правильно, в ней не может быть застоя воды, то есть замерзать при внезапном похолодании вроде бы и нечему. Тем не менее, лучше рекомендаций придерживаться, Ну а если нет никакой возможности закопать трубы поглубже – значит, можно и нужно подумать об утеплении близко расположенных к поверхности участков.
Расстановка колодцев
Производительность колодцев, как уже, наверное, понятно, растет по мере приближения к коллектору – для каждого суммируются сходящиеся в нем потоки.
Где конкретно ставятся колодцы – уже говорилось выше. Единственное, следует уточнить расстояние между ревизионными на прямых участках трассы. Это хорошо понятно из таблицы.
DN 150 | 30 ÷ 35 |
DN 200 | 45 ÷ 50 |
DN 500 | 70 ÷ 75 |
Кстати, есть еще ряд рекомендаций, касающихся размеров колодцев в ливневой канализации.
- Для участков труб диаметром 110 или 150 мм и при глубине колодца до 1000 мм, бывает достаточно диаметра колодца в 700 мм.
- Для труб диаметром 200 мм и глубиной колодца до 3000 мм, а также для труб 110 или 150 мм и глубиной свыше 1000 но не более 3000 мм – диаметр колодца не менее 1000 мм.
- Вне зависимости от диаметра труб, но при глубине свыше 3000 мм, диаметр колодца должен быть не менее 1500 мм.
Ну а размеры хранилища для воды, если оно организуется и производительность подключённых к нему полей фильтрации, складывается из общего поступления со всех точек сбора ливневки.
Кстати, очень интересные идеи о том, как можно с толком использовать собранную ливневкой воду, приводит автор следующего видеосюжета:
Видео: Как можно использовать собранную дождевую воду
* * * * * * *
Вот таким порядком, не спеша и продумывая каждый нюанс, производится самостоятельное проектирование системы ливневой канализации.
В завершение нужно сделать одно очень важное предостережение. По большому счету, ливневая и дренажная система делают схожую работу, просто немного на разных уровнях. Но все равно, их в определенной степени можно совмещать, например, объединяя в одном коллекторе. Но ни в коем случае никогда не проводится никаких, даже малейших «пересечений» с бытовой канализацией. Такое объединение чревато катастрофическими последствиями, которые очень сложно будет потом исправить.
Калькулятор расчета объема ливневых стоков с пояснениями
Время чтения: 1 минутаНет времени?
Ссылка на статью успешно отправлена!
Отправим материал вам на e-mail
Владельцы участков, расположенных в регионах с повышенным количеством осадков, должны особое внимание уделять системе ливневой канализации. Иногда талые и дождевые воды приводят к заболачиванию территории. В результате происходит разрушение площадок, фундаментов и дорожек, а также переувлажнение цоколей зданий.

Традиционные элементы, входящие в состав системы отвода осадков
Особенности устройства ливневой канализации
Система отвода осадков с территории участка может содержать различное количество элементов, предназначенных для определенных зон сбора воды. Обычно в состав ливневой канализации входят: дождеприемники, ревизионные и сливные колодцы, трубопроводы. Перечисленные звенья сети смогут справиться с поставленной задачей при условии, что они будут иметь подходящие объемы.
При планировании системы рекомендуется воспользоваться специальным инструментом – калькулятором для вычисления количества ливневых стоков. После проведения расчетов можно легко подобрать размеры элементов, которые будут использоваться для устройства отводной сети.
Калькулятор расчета объема ливневых стоков
Формула вычислений и ее описание
Прежде, чем спланировать ливневую систему канализации непосредственно на земельном участке, следует определить, какой объем осадков может выпасть за определенный промежуток времени. В зависимости от полученного результата подбираются соответствующие дождеприемники и проводящие элементы. Показатели, полученные для отдельных зон, складываются друг с другом.
Упрощенная формула расчетов для определенного участка будет выглядеть следующим образом:
Qсб = q20 х F х Y
В таблице можно увидеть, что обозначают приведенные символы.
Qсб | Итоговое количество воды, собираемой с участка определенных размеров. |
q20 | Коэффициент, демонстрирующий среднее значение выпадающих осадков в конкретном регионе страны. |
F | Квадратура поверхности, участвующей в сборе воды. |
Y | Коэффициент, отражающий количество влаги, способной впитаться непосредственно в покрытие. |

С помощью представленной карты можно определить коэффициент q20
Что касается коэффициента, отражающего средний объем выпадения осадков, то узнать его не так сложно, так как он используется местными организациями по строительству или проектированию. Существуют даже специальные карты, позволяющие получить необходимое значение. Коэффициент для определения количества влаги, впитываемой в покрытие, уже внесен в программу, поэтому не требует дополнительного расчета. Достаточно указать тип поверхностного слоя.
Окончательный результат будет представлен сразу в нескольких величинах. Таким образом, после вычислений становится известно, сколько литров осадков должна принять и отвести ливневая канализация за одну минуту или секунду. Альтернативный вариант предполагает измерение в кубометрах за один час.
Загрузка...
Расчет наружной дождевой канализации
Пример расчета ливневой канализации (Московская область, Ногинский район). Расчет выполнен по СП 32.13330.2012.
поверхность | Площадь F, га | % от общей F | Коэф-т ψ д | ψд (mid) | Коэф-т ψ i | ψmid |
асфальтобетонные покрытия дорог | 1,390 | 0,18 | 0,60 | 0,108 | 0,95 | 0,171 |
Кровля зданий | 0,770 | 0,10 | 0,60 | 0,060 | 0,95 | 0,094 |
гравий | 0,480 | 0,06 | 0,45 | 0,027 | 0,30 | 0,018 |
Грунтовые поверхности | 5,110 | 0,66 | 0,100 | 0,066 | 0,10 | 0,066 |
Всего | 7,750 | 1 | ψд (mid)= 0,261 | ψmid=0,349 |
Среднегодовой объем поверхностных сточных вод Wг, определяется :
Wг= Wд+ Wт+ Wм, (формула 4, п.7.2.1, СП 32.13330.2012)
Где : Wд,Wт, Wм – среднегодовой объем дождевых, талых и поливо-моечных вод соответственно, м3
Wд = 10hдΨдF=10*465*0,261*7,75=9 406,95 м3 (формула 5, п.7.2.2, СП 32.13330.2012)
Wт = 10hтΨтKуF=10*225*0,5*1*7,75=8 718,75 м3 (формула 6, п.7.2.2, СП 32.13330.2012)
Wм = 10mkΨмFм=10*0,5*150*0,5*7,75=521,25 м3 (формула 7, п.7.2.6, СП 32.13330.2012)
Wг=9 406,95 +8 718,75 +521,25 =18 646,95 м3
Где: F- площадь стока коллектора, га;
Kу — коэффициент, учитывающий уборку снега (см. 7.3.5, СП 32.13330.2012), в расчете принят = 1;
hд— слой осадков, мм, за теплый период года, определяется по СП131.13330 (для г.Москвы = 465мм);
hт -слой осадков, мм, за холодный период года (определяет общее годовое количество талых вод) или запас воды в снежном покрове к началу снеготаяния, определяется по СП131.13330 ; (для г.Москвы = 225мм)
Ψд , Ψт — общий коэффициент стока дождевых и талых вод соответственно
Общий коэффициент стока Ψд для общей площади стока рассчитывается как средневзвешенная величина из частных значений для площадей стока с разным видом поверхности согласно таблице 7.
Таблица 7 СП 32.13330.2012:- Значения коэффициента стока для разного вида поверхностей
Вид поверхности или площади стока | Общий коэффициент стока |
Кровли и асфальтобетонные покрытия | 0,6-0,7 |
Булыжные или щебеночные мостовые | 0,4-0,5 |
Кварталы города без дорожных покрытий, небольшие скверы, бульвары | 0,2-0,3 |
Газоны | 0,1 |
Кварталы с современной застройкой | 0,4-0,5 |
Средние города | 0,4-0,5 |
Небольшие города и поселки | 0,3-0,4 |
При определении среднегодового объема талых вод общий коэффициент стока Ψт с селитебных территорий и площадок предприятий с учетом уборки снега и потерь воды за счет частичного впитывания водопроницаемыми поверхностями в период оттепелей можно принимать в пределах 0,5-0,7 (в расчете принято 0,5).
m- удельный расход воды на мойку дорожных покрытий (принимается 0,5 на ручную и 1,2-1,5 л/м на одну механизированную мойку);
К- среднее количество моек в году (для средней полосы России составляет 100-150); Fм— площадь твердых покрытий, подвергающихся мойке, га;
Ψм— коэффициент стока для поливомоечных вод (принимается равным 0,5)
Объем дождевого стока от расчетного дождя, отводимого на очистные сооружения:
Wоч = 10haΨmidF=10*10,0*0,349*7,75=270,7 м3 (формула 8, СП32.13330.2012)
— ha — максимальный слой осадков за дождь, сток от которого подвергается очистке в полном объеме, мм (принимаем от 5- 10мм, см. Водгео);
— Ψmid — средний коэффициент стока для расчетного дождя (определяется как средневзвешенная величина в зависимости от постоянных значений коэффициента Ψi стока для разного вида поверхностей по таблице 14, СП 32.13330.2012:
Таблица 14 СП 32.13330.2012:
Вид поверхности стока | Коэффициент покрова | Постоянный коэффициент стока |
Водонепроницаемые поверхности (кровли и асфальтобетонные покрытия) | 0,33-0,23 (принимается по таблице 15) | 0,95 |
Брусчатые мостовые и щебёночные покрытия | 0,224 | 0,6 |
Булыжные мостовые | 0,145 | 0,45 |
Щебёночные покрытия, не обработанные вяжущими материалами | 0,125 | 0,4 |
Гравийные садово-парковые дорожки | 0,09 | 0,3 |
Грунтовые поверхности (спланированные) | 0,064 | 0,2 |
Газоны | 0,038 | 0,1 |
Максимальный суточный объем талых вод, в середине периода снеготаяния, отводимых на очистные сооружения:
Wт,cyт = 10hсFаΨтКy=10*25*7,75*0,8*0,5*0,9=697,5 м3 (формула 9, СП 32.13330.2012)
Где: 10 — переводной коэффициент;
hс— слой талых вод за 10 дневных часов при заданной обеспеченности, принимаем 25 мм (см. приложение 1, формулу 10, Водгео);
F- площадь стока, га;
а- коэффициент, учитывающий неравномерность снеготаяния, допускается принимать 0,8;
Ψт— общий коэффициент стока талых вод (принимается 0,5-0,8), в расчете принят 0,5;
Ку— коэффициент, учитывающий частичный вывоз и уборку снега, определяемый по формуле:
Ку= 1 — Fy /F=1-0,775/7,75=0,9 (формула 10, СП 32.13330.2012)
Fy = 0,15* F=0,1*7,75=0,775
Расход дождевых вод в коллекторах дождевой канализации, л/с, составит:
Qr=(Ψmid*A*F)/tnr =0,349*384,32*7,75/(12,1)0,59=327,3 л/с (формула 1, раздел 7.4, СП 32.13330.2012)
Где А, n – параметры, характеризующие соответственно интенсивность и продолжительность дождя для конкретной местности. А определяется по формула 13, СП 32.13330.2012. n – определяется по таблице 9 СП 32.13330.2012.
Ψmid – средний коэффициент стока (ранее рассчитан)
tnr— расчетная продолжительность дождя, определяется по формуле:
tr = tcon + tсап + tр =3+0+4,1=7,1 мин (формула 14, раздел 7.4.5, СП 32.13330.2012)
где tcon – продолжительность протекания дождевых вод до дождеприемника (время поверхностной концентрации), (определяется по СП 32.13330.2012 п.7.4.6: Время поверхностной концентрации дождевого стока следует рассчитывать или принимать в населенных пунктах при отсутствии внутриквартальных закрытых дождевых сетей равным 5-10 мин, а при их наличии — равным 3-5 мин. При расчете следует внутриквартальной канализационной сети время поверхностной концентрации принимать равным 2-3 мин.). В расчете принят tcon=3мин;
tсап — то же, по уличным лоткам до дождеприемника (при отсутствии их в пределах квартала), определяемая по формуле (15) СП 32.13330.2012. В расчете принят равным 0, т.к. нет уличных лотков;
tp – то же, по трубам до рассчитываемого сечения, определяемая:
=0,017*410/1,7=7,1, мин (формула 16, раздел 7.4.6, СП 32.13330.2012).
Где: lp— длина расчетных участков коллектора, м (по генплану);
Vp – расчетная скорость течения на участке, м/с.
=80*200,59*(1+lg(0,5)/lg(150))1.33=384,32 (формула 13, СП 32.13330.2012)
Где: q20— интенсивность дождя, л/с на 1 га, для данной местности продолжительностью 20 мин при Р=1год (определяется по рисунку Б.1 СП 32.13330.2012). Из рисунка Б.1 q20=80;
mr— среднее количество дождей за год (по таблице 9, СП 32.13330.2012). Для равнинной области запада и центра Европейской части России mr=150.;
Р-период однократного превышения расчетной интенсивности дождя (определяется по п.7.4.3., таблица10,11,12, СП32.13330.2012). В расчете P=0,5;
γ-показатель степени (определяется по таблице 9, СП 32.13330.2012). Для равнинной области запада и центра Европейской части России γ =1.33.
Расход дождевых вод для гидравлического расчета дождевых сетей,:
Qсаl = βQr = 0,71*327,3=232,38 л/с
Расход стока, направляемый на очистку определяется по формуле 167, пособие к СНиП 2.04.03-85:
Qг=К1*К2*Qr=0,26*1,51*327,3=128,5л/с
Где: Значения коэффициентов K1, и K2 в зависимости от величины С и п для различных условий расчета очистных сооружений и сети дождевой канализации приведены в табл. 55 и 56 пособие к СНиП 2.04.0-85), а величин параметра «n» и коэффициента «С» на рис. 26, 27 (пособие к СНиП 2.04.0-85). Для Москвы: С=0,85, n=0,65. Принимаем Pоч=0,1. Из таблицы 55 (пособие к СНиП 2.04.0-85): К1=0,26.
Р=0,5, С=0,85. Из таблицы 56 (пособие к СНиП 2.04.0-85): К2=1,51
О расчёте внутренних водостоков
В пункте 8.7.12 [1] рекомендуется: «Водосточные стояки… рассчитывать на гидростатическое давление при… переполнениях…», то есть они должны транспортировать дождевые стоки полным сечением. При этом в пункте 8.7.10 [1] рекомендуется: «Расчётный расход дождевых вод, приходящийся на водосточный стояк, не должен превышать величин, приведённых в табл. 7». Полностью согласиться с этой рекомендацией нельзя, так как расчёты (табл. 1) показывают, что скорости течения дождевых стоков Vр по водосточным стоякам указанных диаметров d при максимально допустимых для них расходах Qр будет различаться на 11–61 %. То есть получается так, что по непонятной причине для некоторых диаметров рекомендуемые расходы либо занижены, либо завышены. В этой связи представляется, что было бы вполне приемлемым использование для указанных диаметров больших расходов Qр (табл. 1, строка 6, столбцы 2, 3 и 5).
В пункте 8.7.9 [1] рекомендуется: «Расчётный расход дождевых вод Q [л/с], с водосборной площади следует вычислять по формулам:
для кровель с уклоном до 1,5 % включительно: Q = Fq20 /10 000, (24)
для кровель с уклоном свыше 1,5 %: Q = Fq5 /10 000, (25)
где F — водосборная площадь, м²; q20 — интенсивность дождя, л/с с 1 га (для данной местности), продолжительностью 20 минут при периоде однократного превышения расчётной интенсивности, равной одному году (принимаемая согласно СП 32.13330); q5 — интенсивность дождя, л/с с 1 га (для данной местности), продолжительностью пять минут при периоде однократного превышения расчётной интенсивности, равной одному году, вычисляемая по формуле:
q5 = 4nq20, (26)
где n — параметр, принимаемый согласно СП 32.13330».
В пункте 8.7.11 [1] рекомендуется: «При определении расчётной водосборной площади следует дополнительно учитывать 30 % суммарной площади вертикальных стен, примыкающих к кровле и возвышающихся над ней».
Интенсивность дождя q20 в (24) для данной местности продолжительностью 20 минут при P = 1 год для гидравлического расчёта ВВПК можно принимать по рис. 1, а для районов, которые не изучены, расчётным [5] путём.
Показатель степени n для (26) следует принимать по табл. 2.
К сожалению, в Своде Правил [1] не хватает данных для разработки алгоритмов гидравлических расчётов, минимизирующих затраты [4] на весь ЖЦ ВВПК с учётом конкретных условий.
Тем не менее, можно представить схемы расчётов ВВПК, работающих как в напорном режиме, так и в безнапорном. Для сброса посредством напорных ВВПК расчётного расхода дождевых вод Q с водосборной площади F вначале определяем необходимое количество напорных водосборных стояков Nвс.
Для этого принимаем априори их диаметр dр и, руководствуясь данными табл. 7 [1], определяем Nвс ≈ Q/Qр. Затем подбираем для водосборных стояков соответствующие водосборные воронки (согласно пункту 8.7.10 [1] их пропускная способность Qвв должна указываться в паспортах на них).
Движение дождевых стоков [6] через водосточную воронку (от отверстий в её колпаке, по сливной части и патрубок в водосточный стояк и далее через гидравлический затвор в водосточный выпуск) происходит под действием собственных сил гравитации и давления слоя жидкости, накапливаемого на кровле вокруг воронки (рис. 2).
Расход Q, протекающий через воронку с патрубком, например, длиной 3–5D, связан соответствующим образом с её конструкцией и во многом зависит от высоты h слоя дождевых стоков вокруг неё:
где m — коэффициент расхода, зависящий от конструкции водосточной воронки; Ов — площадь рабочего сечения воронки, м². При длине патрубка водосточной воронки более 10–12D кольцевой водовоздушный поток 10 (рис. 2) смыкается, и в системе «водосточная воронка — водосточный стояк», как правило, возникает напорное течение жидких атмосферных осадков 9. Если дождевые стоки движутся сплошным потоком без существенного включения воздушных пузырьков или воздушных струй, то пропускная способность [м³/с]:
где Ост и H — площадь живого сечения и высота водосточного стояка, [м²] и [м], соответственно.
Коэффициент расхода при напорном режиме движения дождевых стоков во внутренних водостоках зданий с плоскими кровлями:
где Σξ — сумма коэффициентов местных гидравлических сопротивлений (табл. 3); λ — коэффициент гидравлического сопротивления трения по длине водосточного трубопровода; l — длина водосточного трубопровода, м.
При течении дождевых стоков по ВВПК (по пути: воронка → стояк → горизонтальный отводной трубопровод) в напорном режиме, наступающем при достижении критической глубины hкр [м], слоем дождевых осадков, выпадающих на кровлю здания, максимальный расход Qmax [м³/с], может быть определён по следующим формулам:
где Нп — полный напор, равный разности отметок поверхности слоя дождевых стоков на кровле и лотка горизонтального отводного трубопровода, м; S0 — полное сопротивление трубопровода ВВПК [м], которое определяют по формуле:
где А — удельное сопротивление трения по длине трубопровода, м·с²/л²; выбирают в зависимости от материала труб; Ам — удельное местное сопротивление, м·с²/л²; К — расходная характеристика водосточной системы, м³/с; e — гидравлический уклон трубопроводов ВВПК.
В общих случаях размеры водосточных стояков, сборных водосточных трубопроводов, гидрозатворов и водосточных выпусков следует определять посредством гидравлических расчётов по методике для напорных сетей [7].
В случае, когда требуется, чтобы полная потеря напора ΔН в (включая отверстия в колпаке водосборной воронки, водосборную воронку, водосточный стояк, примыкающий участок сборного трубопровода, гидравлический затвор и водосточный выпуск) не превышала бы располагаемый напор Н, то есть ΔН ≤ Н, сначала определяют расчётный расход жидких атмосферных осадков Qp, поступающих с расчётной площади F [м²], кровли здания в рассчитываемую водосточную воронку. Затем вычисляют полную потерю напора ΔН во всём ВВПК при расходе Qp по формулам:
Если в результате гидравлического расчёта ВВПК получается, что ΔН > Н, то производят повторный её гидравлический расчёт. При этом можно использовать несколько вариантов. В одном из них используется замена труб: на больший диаметр либо на другой материал, например, вместо чугунных труб — полимерные. В другом варианте уменьшают водосборную площадь, приходящуюся на используемую в расчётах водосборную воронку. Третий вариант предполагает комбинацию первого и второго варианта в различных сочетаниях параметров.
При гидравлических расчётах ВВПК целесообразно использовать коэффициенты запаса с целью учёта возможного увеличения гидравлического сопротивления её элементов с течением времени (из-за зарастания или коррозии внутренней поверхности воронки, водосточных труб и деталей) K3 и вероятности однократного превышения расходов K4, которые можно определить по формулам:
Практика показывает, что в гидравлических расчётах целесообразно применять приближенные значения величин К3 = 1,2 и К4 = 1,1 (для обычных) и К3 = 2 и К4 = 1,4 (для ВВПК, переполнение которых может причинить значительный материальный ущерб).
Формулы (1)–(11) распространяются в основном на гидравлический расчёт самых простых водосточных систем с одной какой-либо воронкой на стояке.
Если руководствоваться тем (пункт 8.7.10 [1]), что пропускная способность водосборной воронки Qвв известна, то можно использовать другую схему расчёта ВВПК, работающих в безнапорном режиме. Для этого вначале определяем необходимое количество Nвв водосборных воронок для пропуска расчётных расходов дождевых стоков, то есть Nвв ≈ Q/Qвв. После этого вычисляем расход Qвс, который должен транспортироваться самотёком по водосточному стояку, то есть Qвc ≈ 0,5Qвв. Затем по табл. 7 [1] подбираем диаметр dр безнапорных водосточных стояков. Размеры сборных водосточных трубопроводов, гидрозатворов и водосточных выпусков следует определять посредством гидравлических расчётов по методике для безнапорных канализационных сетей [7]. При этом следует также учитывать материалы (металлы/полимеры) трубных изделий, предполагаемых к использованию.
Использование в ВВПК полимерных труб [8–11] требует особого рассмотрения, так как их долговечность связана с длительностью [12] воздействия на них внутренних давлений. (Такое рассмотрение можно будет выполнить в дальнейшем на страницах журнала С.О.К.)
На этом можно было бы и остановиться. Однако… В пункте 8.7.12 Свода Правил [1] касательно расчёта внутренних водостоков акцент сделан на явлении, могущем иметь место, — так называемых «переполнениях». Однако как именно могут возникнуть переполнения, в СП на этот счёт никаких сведений не приводится.
Ранее было показано [3], что накапливаемый на плоской крыше объём Wmax дождевых вод целесообразно подразделить на четыре части (с объёмами W1, W2, W3, W4) и объём одной из них W2 принять в качестве расчётного сброса (рис. 3а и 3б) (расход для выбора типов водосборных воронок и диаметров водосточных стояков, вначале расчётных dр, а затем фактических — внутренних dв либо наружных dн). Объёмы дождевых вод других частей — W3 и W4 предложено считать в качестве аккумулирующего (рис. 3в и 3г) и аварийного (рис. 3д и 3е) расходов, соответственно. Как это следует выполнять? (Этот вопрос в случае заинтересованности научно-технической общественности можно будет рассмотреть в следующих статьях.)
В заключение следует отметить, что использование рекомендаций Свода Правил (СП) 30.13330.2016 «Актуализированной редакции СНиП 2.04.01–85* “Внутренний водопровод и канализация зданий”» совместно с рассмотренными в статье положениями могут вполне расширить возможности проектировщиков при проведении гидравлических расчётов с целью минимизации затрат на весь жизненный цикл (ЖЦ: проектирование → монтаж → эксплуатация → ремонт → утилизация) внутренних водостоков зданий и сооружений с плоскими кровлями различного назначения.
(Каким образом функциональные назначения кровель могут влиять на внутренние водостоки, целесообразно проанализировать в следующих публикациях, в случае заинтересованности научно-технической общественности.)