Главная
О компании
Всё для кровли
  • Доставка
  • О компании
  • Контакты
Главная

Полезно знать:

Правильное использование кровельных саморезов Как правильно собрать кровлю? Таблица цветов RAL Правильный выбор металлочерепицы Профнастил. Что нужно знать
Скачать прайс-лист

Скачать прайс-лист

Главная » Разное » Устройство эксплуатируемой кровли террасы

Устройство эксплуатируемой кровли террасы


Терраса на крыше использование эксплуатируемой кровли

Влагостойкая террасная доска — идеальное решение в популярном сегодня использовании свободных площадей крыш для создания «зеленой кровли» или крыши-сада.

 

                           Используйте пространство по полной,обустроив все части своего дома. 

Коттеджи и частные дома с плоскими кровлями привлекательны своей архитектурой. Наличие эксплуатируемой кровли добавит проекту вашего дома внешнюю изюминку, а Вам – дополнительную площадь для уютного отдыха.

Эксплуатируемая кровля, открытая мансарда, крыши-террасы – это полностью эксплуатируемая дополнительная площадь дома, которая может быть использована в самых различных целях, включая обустройство спортивных площадок, тренажерных залов, солярия, открытой комнаты отдыха и прочее. Несущим основанием для бесчердачных конструкций выступают панели, плиты либо настилы перекрытий, сверху которых настилаются слой гидро- и пароизоляции, утеплитель, армированная выравнивающая стяжка.

Популярность эксплуатируемых крыш сегодня все больше набирает обороты, и в этом нет ничего удивительного, поскольку такие поверхности имеют не только красивый и необычный внешний вид, но еще и очень удобны и практичны на деле. Эксплуатируемая кровля открывает массу возможностей для творческого и рационального проектирования пространства! Более того, использование кровель в качестве свободных площадей - весьма выгодное мероприятие в условиях мегаполиса, где иногда приходится бороться за стоимость каждого квадратного метра на земле!

Если вы решили, что вам нужна эксплуатируемая кровля, устройство её не составит очень большого труда. Наиболее предпочтительным материалом для отделки таких крыш является террасная доска из ДПК. Этот удивительный по своим характеристикам материал не скользит и не выгорает (что весьма актуально для покрытий кровли), а также не боится морозов и температурных перепадов. Кроме того, террасная доска не требует за собой особого ухода и проста в установке и демонтаже. Все это позволяет заняться обустройством будущего «высотного садика» заблаговременно, даже в зимний период времени, благодаря чему вы экономите и время, и деньги.

Обустраивая сад на крыше, многие сначала обращают внимание на такие материалы как камень и плитка. Однако нужно иметь в виду, что они сильно увеличивают нагрузку на конструкцию здания. Кроме того, тяжеловесные материалы еще и весьма травма опасны, особенно в дождливую и холодную погоду, а также требуют за собой регулярного тщательного ухода. В то же время террасная доска из ДПК полностью безопасна, экологична и имеет сравнительно небольшой вес. Из декинга можно делать практически все: начиная от изящных садовых скамеек, заканчивая стройными высокими ограждениями. Так же есть полностью подготовленные ограждения из ДПК с текстурой дерева, они полностью сочетаются в цветовой гамме с террасной доской. В обустройстве крыш мы предлагаем свою помощь воплощая ваших самых смелых идей: любая ваша фантазия будет воплощена в жизнь специалистами компании DeckWOOD.

Разнообразие цветов, оттенков, толщины и фактур террасной доски помогут «разгуляться» Вашей фантазии. Что касается экологичности материала, то он совершенно безопасен, поскольку не выделяет никаких вредных веществ, включая фенол и формальдегид. Кроме того, декинг устойчив к разрушению и гниению (что особенно актуально при влажном воздухе), а также имеет идеально ровную поверхность, исключая даже возможность появления заноз. Прост в монтаже и демонтаже, не требует специального ухода… и .т.д.

В целом, террасная доска применяется для отделки террас, патио, загородных усадеб, лестничных площадок и крыш, парковок, зон отдыха и спортивных площадок, палуб яхт и кораблей, причалов и даже паромов! Так что при желании Вы можете обустроить свою «зеленую кровлю» исключительно из декинга на основе древесно-полимерного композита. Это универсальный материал, благодаря которому у вас будет прочная, надёжная и лёгкая в уходе эксплуатируемая кровля.

 

Монтаж настила из ДПК с основанием из контр уклон и водостока

При монтаже такого рода крыш необходимо предусмотреть небольшой уклон поверхности крыши в один-два градуса для того, чтобы дождевая вода не скапливалась. Такой уклон делается в сторону расположения воронок водосточной системы. Часто для таких крыш используется устройство внутренних водостоков, когда трубы располагаются внутри стен, а на поверхности остаются только принимающие воронки, защищенные сетками. Подробней…

Вентилируемая каркасная плоская кровля терраса

В этой статье речь идет об эксплуатируемой вентилируемой террасе, устроенной на деревянных балках над отапливаемым помещением как с внутренней, так и с наружной системой водоотвода.

Терраса над помещением является одним из наиболее сложных элементов, как для проектирования, так и для возведения,  имеет структуру аналогичную плоской кровле и выполняет те же функции. Одним из преимуществ вентилируемой конструкции террасы является то, что все изоляционные материалы находятся между балками перекрытия, что существенно снижает толщину внешних слоев. Также вентилируемая конструкция террасы позволяет отводить избыточную влагу из перекрытия.

Конструкция вентилируемой террасы должна соответствовать следующим условиям: — вентилируемая терраса должна выступать за контуры основного дома. См. рис. 132a. Разрешается лишь частичное встраивание террасы на расстояние менее 1 м. См. рис. 132b. Это является необходимым условием для прохождения достаточного количества воздуха во всех частях вентиляционного зазора. — при устройстве вентилируемой террасы вентиляционный зазор создается с помощью двойной обрешетки. С открытых сторон вентилируемой террасы должны быть предусмотрены вентиляционные отверстия. Прохождение достаточного количества воздуха необходимо для отвода избыточной влаги. — конструкция вентилируемой террасы не должна допускать попадания влаги из осадков внутрь перекрытия. Для этого нужно использовать специальные ветро-, гидрозащитные мембраны, однако они не должны препятствовать выходу пара из утеплителя. Для настила под водонепроницаемое покрытие пола, нужно использовать влагостойкие материалы, например, плиты класса OSB-3. — если есть опасность таянья большого количества снега на поверхности террасы, то в таком случае нужно предусмотреть систему внутреннего водоотвода, встроенную в само перекрытие. В южных районах, с малым количеством осадков в виде снега, можно применять навесные водосточные желоба и настенные водосточные трубы, также это касается тех случаев, когда терраса заведена под общую с домом кровлю или толщина теплоизоляционного слоя составляет минимум 250 мм.

— уровень пола террасы должен быть примерно на 50 мм ниже уровня пола внутри дома.

Рис. 132a и b. Расположение террасы по отношению к основному дому.

2.1. Несущая конструкция вентилируемой плоской кровли, террасы

Перекрытие, являющееся основанием изолированной вентилируемой террасы, должно состоять из деревянных балок с сечением, удовлетворяющим требования прочности и жесткости. При расчетах нужно отталкиваться от минимально возможной высоты балок составляющих несущий каркас террасы, это нужно для того чтобы снизить уровень пола примерно на 50 мм по отношению к полу внутри дома. Чтобы увеличить несущую способность перекрытия можно уменьшить шаг несущих балок. При выборе сечения несущих балок изолированной вентилируемой террасы нужно помнить, что высота балки должна быть равна расчетной толщине теплоизоляционного слоя. См. рис. 21. Содержание влаги в несущих балках во время сборки перекрытия не должно превышать 15%.

​

Рис. 21. Устройство изолированной вентилируемой террасы на деревянных балках.

2.2. Вентилируемая каркасная плоская кровля терраса — устройства пола

Устройство пола террасы показано на рис. 23, элементы конструкции, находящиеся под сплошным настилом показаны на рис. 21. Для настила под водонепроницаемое покрытие пола, нужно использовать влагостойкие материалы, например, плиты класса OSB-3. В качестве водонепроницаемого покрытия пола можно использовать рубероид, вальцованные листы из оцинкованной стали и другие подобные материалы. Для защиты водонепроницаемого покрытия от механических повреждений применяются щиты из импрегнированных деревянных досок. Ширина монтажного бруска должна быть не менее 73 мм. На монтажном бруске не должно быть острых граней, обращенных к водонепроницаемому покрытию. Перед установкой деревянных щитов под монтажный брусок укладывают дополнительную прокладку для защиты водонепроницаемого покрытия. Деревянные щиты укладывают так, чтобы они не мешали оттоку дождевой воды. Закреплять деревянные щиты к балкам перекрытия не нужно, они должны быть легкосъемными для того, чтобы обеспечить возможность уборки.

​

Рис. 23. Пол террасы.

2.3. Ограждение эксплуатируемой плоской кровли, террасы

Ограждение террасы должно иметь такую конструкцию, чтобы здоровью детей и взрослых не был нанесен ущерб по причине падения за ограждение или застревания в нем. Если терраса расположена на высоте более 0,5 м от уровня земли, то высота ограждения должна быть не менее 1 м. Высота ограждения измеряется от верхнего уровня деревянных щитов. Крепление стоек ограждения должно быть достаточно прочным, чтобы выдерживать расчетную горизонтальную нагрузку 0,4 kN/м2. Шаг стоек ограждения должен быть не более 1,2 м. Между стойками ограждения выполняют вертикальное либо горизонтальное заполнение. Чтобы уберечь детей от падения за ограждение, расстояние между вертикальными элементами ограждения должно быть не более 100 мм. Чтобы дети не забирались на ограждение, расстояние между горизонтальными элементами должно быть не более 20 мм.

Чтобы обеспечить горизонтальную жесткость и прочность ограждения террасы, поверх стоек монтируется массивный поручень. В местах угловых соединений поручень собирается с помощью металлических уголков или фанерных накладок таким образом, чтобы внешне это было незаметно. Ограждение террасы должно быть жестко закреплено к наружной стене. Стойки ограждения крепятся к с наружной стороны террасы чтобы не повредить ветро-, гидрозащитную мембрану как показано на рис. 813a и b и рис. 823. Если закрепить ограждение террасы к стене невозможно или его длина составляет от 8 до 10 м, то перед тем как выбрать сечение стоек и тип крепления, необходимо провести детальный расчет, учитывающий актуальные моменты и нагрузки.

2.4. Система водоотвода. Необходимый уклон водонепроницаемого покрытия

Водонепроницаемое покрытие террасы должно располагаться под уклоном минимум 1:40 по направлению к желобам. Желоба должны иметь уклон минимум 1:60 по направлению к водосборной воронке. При этом деревянные щиты, устанавливаемые для защиты водонепроницаемого покрытия от механических повреждений, не должны мешать оттоку дождевой воды. См. рис. 23. В южных районах, с малым количеством осадков выпадающих в виде снега, в качестве системы водоотвода можно применять навесные водосточные желоба и настенные водосточные трубы, также это касается тех случаев, когда терраса заведена под общую с домом кровлю или толщина теплоизоляционного слоя перекрытия составляет более 250 мм. Для защиты наружной системы отвода воды от промерзания можно спроектировать электрическую систему обогрева.

Если есть опасность таянья большого количества снега на поверхности террасы, то в таком случае нужно предусмотреть систему внутреннего водоотвода, встроенную в само перекрытие. Внутренняя система водоотвода избавлена от проблемы замерзания. Конструктивно, она состоит из водосборной воронки, водосливной трубы («стояка») и выпуска – участка трубопровода для отвода атмосферных сточных вод в сеть ливневой канализации.

На рис. 812a и b показана наиболее распространенная конструкция внутренней системы водоотвода. Водосборная воронка установлена у наружной стены дома, потому что там в первую очередь происходит таянье снега, там расстояние до внутренней стены нижнего этажа будет наименьшим. Водосливная труба должна располагаться во внутренней стене находящейся этажом ниже, если это не представляется возможным, то ее монтируют с теплой стороны наружной стены строения. Водосточный желоб должен идти вдоль двери или вдоль высоких окон, минимальная длина желоба должна быть не менее ширины проема. Рекомендуется монтировать водосточный желоб по всей ширине террасы. Верхний уровень желоба направленного к воронке должен быть на 150 мм ниже водонепроницаемого покрытия заведенного под дверной порог или под высокие окна. Ширина водосточного желоба должна быть такой, чтобы было достаточно места для монтажа водосборной воронки. Водосборная воронка устанавливается в самой нижней точке поверхности плоской кровли, там, где в первую очередь происходит таянье льда, и соединяется с водосливной трубой, образуя герметичное соединение. В месте прохождения сквозь ветро-, гидрозащитную мембрану водосливная труба должна уплотняться резиновой манжетой. См. рис. 812b. Для того, что бы стояк водосточной системы не засорялся различным мелким мусором, сверху на водосборную воронку монтируют специальную решетку.

В зависимости от типа водосборной воронки применяются различные способы крепления: вклеивание и прижим с помощью нержавеющих шурупов.

Водосборная воронка с прижимным кольцом: ​

Водосборная воронка с прижимным кольцом закрепляется таким образом, чтобы была обеспечена возможность свободного хода выпускного патрубка водосборной воронки внутри водосливной трубы («стояка»). Это делается для того, чтобы воронка не выпирала над поверхностью водонепроницаемого покрытия в случае усадки несущих деревянных конструкция перекрытия.

​Водосборная воронка с уплотнительной манжетой, наклеенной на фланец: ​

Монтаж водосборной воронки с уплотнительной манжетой, наклеенной на фланец, производят таким образом, чтобы водонепроницаемое покрытие кровли приклеивалось поверх уплотнительной манжеты с нахлестом минимум в 50 мм. В каждом из вышеперечисленных случаев, по окончании работ следует провести испытания системы водоотвода водой подающейся под давление. Количество водосборных воронок и диаметр сливной трубы рассчитываются исходя из конструктивных особенностей кровли и интенсивности атмосферных осадков для заданной местности. В качестве аварийного водоотвода с кровли, в случае засора основной системы водостока применяют переливы. Перелив применяют в тех случая, когда конструкция плоской кровли подобна той, что изображена на рис. 813c. Перелив располагают в самой нижней точки поверхности кровли и приваривают к водонепроницаемому покрытию кровли.

Перелив: ​

3.1. Теплоизоляция эксплуатируемой плоской кровли, террасы над отапливаемым помещением

В качестве теплоизоляции обычно применяют плиты из минеральной ваты обладающие теплопроводностью 0,033 и 0,037 Вт/м*К, где К-градус Кельвина. Для того чтобы добиться минимальной толщины перекрытия, рекомендуется использовать теплоизоляционные материалы обладающие наименьшим коэффициентом теплопроводности. В табл. 32 приводятся значения коэффициента теплопередачи для теплоизоляционных материалов, обладающих различной толщиной и теплопроводностью.

Табл. 32. Коэффициенты теплопередачи для изолированной вентилируемой террасы на деревянных балках. См. рис. 21.

Примечание: При расчетах учитывалось, что толщина теплоизоляции будет равна высоте балок перекрытия. Шаг балок перекрытия равен 600 мм, а их толщина — 48 мм. При использовании балок перекрытия толщиной 73 мм, коэффициент теплопередачи возрастает на 0,02 Вт/(м2К).

Плиты теплоизоляции должны устанавливаться между балками перекрытия после того, как будут смонтированы ветро-, гидрозащитная мембрана, оба слоя обрешетки, сплошной настил и водонепроницаемое покрытие плоской кровли. Рекомендуется укладывать теплоизоляцию в два слояс перекрытием стыков плит. Толщина теплоизоляционного слоя должна строго соответствовать высоте балок, чтобы ветро-, гидрозащитная мембрана немного провисала как показано на рис. 21. Это нужно для того чтобы места стыков между листами мембраны, зажатые деревянными рейками, находились выше уровня самой мембраны. Поэтому, нельзя встраивать теплоизоляцию выше верхнего уровня балок перекрытия.

4.1. Пароизоляция эксплуатируемой плоской кровли, террасы над отапливаемым помещением

В качестве пароизоляции рекомендуется использовать качественную полиэтиленовую пленку, обладающую достаточной долговечностью, толщиной 0,15 мм. Под балки перекрытия затем рекомендуется прибить в перпендикулярном направлении рейки толщиной минимум 23 мм, чтобы, таким образом, обеспечить возможность прокладки гофрированных трубок для электропроводки. Потолок может состоять материалов или деревянной вагонки. Использовать встраиваемые потолочные светильники не советуется. Во избежание скопления влаги внутри ограждающей конструкции, пароизоляция должна быть выполнена правильно. Пароизоляция должна монтироваться без поперечных стыков по все длине балок террасы. Стыки делают по длине балок террасы и прижимают с нижней стороны рейкой. В местах стыка пароизоляции террасы со стеной, ее заводят на стену и зажимают рейкой так, чтобы стык между пароизоляцией перекрытия и пароизоляцией стены был герметичным. На рис. 812b и рис. 822a и b мы видим, что пароизоляция перекрытия основного дома заводится на стену примерно на 1 м. В данном случае, это сделано для того чтобы воспрепятствовать прохождению влаги в перекрытие террасы посредством диффузии. На рис. 812a показана вертикально установленная плита теплоизоляции, обернутая с 3-х сторон пароизоляцией. Это делается для того, чтобы обеспечить парозащиту теплоизоляционного слоя перекрытия террасы.

5.1.Комбинированная ветро-, гидрозащита эксплуатируемой плоской кровли, террасы над отапливаемым помещением

В качестве комбинированной ветро-, гидрозащиты применяют специальные паропроницаемые мембраны. Мембранную ветро-, гидрозащиту монтируют по всей длине балок террасы, без поперечных стыков. Стыки делают по длине балок террасы с нахлестом минимум 50 мм. Места стыков мембранной ветро-, гидрозащиты должны быть приподняты как показано на рис. 21. Для этого вначале поверх балок террасы набивают рейки, на них укладывают ветро-, гидрозащитную мембрану с небольшим провисанием между балками (см. рис. 21.), а затем зажимают мембрану с помощью еще одного слоя реек. В местах стыка ветро-, гидрозащитной мембраны террасы со стеной (см. рис. 813aи рис. 822a) ее крепят с нахлестом к ветро-, гидрозащитной мембране стены. Места стыков должны герметично зажиматься рейкой.

5.2.Сплошной настил плоской кровли

Для устройства сплошного настила плоской кровли (см. рис. 21) используют влагостойкие плитные материалы. Влагостойкие плиты прибивают к рейкам гвоздями или прикручивают шурупами. Расстояние между креплениями должно быть не более 150 мм по контуру плиты и не более 300 мм по центру. Наилучшее качество крепления обеспечивают шурупы или витые гвозди. Для плит толщиной до 15 мм используют шурупы длиной 45-50 мм или гвозди длиной 55 мм. Если толщина плиты больше 15 мм, то используются шурупы длиной 55 мм или гвозди длиной 65 мм. На поверхности сплошного настила не должно быть выступающих шляпок шурупов и гвоздей или прочих выступающих частей, могущих повредить водонепроницаемое покрытие плоской кровли. Влагостойкие плиты сплошного настила должны укладываться с уклоном минимум 1:40 по направлению к водосборной воронке или к наружному водосточному желобу в зависимости от типа системы водоотвода. Уклон можно создать, подкладывая под влагостойкие плиты клинья или же их можно крепить к рейкам различной толщины.

6.1.Устройство вентилируемого зазора эксплуатируемой плоской кровли, террасы над отапливаемым помещением

Для устройства вентилируемого зазора в данном случае используют двойные рейки сечением минимум 23х48 мм (см. рис. 21) и поперечные рейки сечением 36х48 мм. Для того что бы стыки ветро-, гидрозащитной мембраны надолго оставались надежно зажатыми, нужно использовать рейки с влажностью не более 15%. С открытых сторон вентилируемой террасы должны быть предусмотрены вентиляционные отверстия шириной не менее 30-40 мм. Прохождение достаточного количества воздуха необходимо для отвода избыточной влаги.

7.1.Монтаж водонепроницаемого покрытия плоской кровли

В качестве водонепроницаемого покрытия плоской кровли можно использовать рубероид или специальные рулонные гидроизоляционные материалы, устойчивые к механическим нагрузкам и повреждениям. Стыки водонепроницаемого покрытия должны свариваться. Водонепроницаемое покрытие должно быть механически прикреплено к сплошному настилу. Исключение составляют те случаи, когда площадь террасы невелика и она не подвержена воздействию сильного ветра, так что деревянные щиты из импрегнированных досок являются достаточным балластом. Края водонепроницаемого покрытия плоской кровли должны заводиться под ветрозащитное покрытие стены, под дверной порог и загибаться за края террасы. Более подробно эти моменты отображены на рисунках в разделе конструктивных решений (см. далее по тексту статьи). В тех местах, где заведенное под дверной порог водонепроницаемое может подвергнуться дополнительным механическим повреждениям, устанавливают защитные металлические отливы.

8.1. Конструктивные решения для изолированной вентилируемой плоской кровли, террасы с внутренней системой водоотвода

Сплошной настил вентилируемой террасы с внутренней системой водоотвода должен выполняться с уклоном минимум 1:40 по направлению к водосточному желобу, расположенному у внутренней стены дома. См. рис. 812a и b. На рисунке 812a показано устройство вентилируемой террасы расположенной на выступающих балках перекрытия основного дома. Уровень пола во внутренне помещении поднят до такой высоты, чтобы водонепроницаемое покрытие террасы заводилось минимум на 150 мм под дверной порог, при этом разница в уровне полов должна быть приемлемой. В деревянном щите, расположенном над водосточным желобом используют узкие террасные доски, уложенные с зазором минимум 5 мм, чтобы обеспечить хорошие условия для оттока дождевой воды. Террасные доски над водосточным желобом должны крепиться таким образом, чтобы их можно было снимать для прочистки желоба и водоприемной воронки. В качестве альтернативного решения над водосточным желобом можно использовать съемную решетку. См. рис. 812b. Парозащита теплоизоляции перекрытия выполняется с помощью вертикально установленных плит теплоизоляции обернутых с трех сторон в парозащитную пленку. См. рис. 812a. Плиты теплоизоляции должны нарезаться таким образом, чтобы плотно заполнить весь проем.

На рис. 812b. изображена несколько иная конструкция вентилируемой террасы. В данном случае, балки террасы опираются на каркас несущей внутренней стены, а балки перекрытия основного дома опираются на балки террасы.

Рис. 812a. Устройство изолированной вентилируемой террасы с внутренней системой водоотвода расположенной на выступающих балках перекрытия основного дома.Водонепроницаемое покрытие террасы заводится минимум на 150 мм под дверной порог.

Рис. 812b. Устройство изолированной вентилируемой террасы с внутренней системой водоотвода. Балки террасы опираются на каркас несущей внутренней стены, а балки перекрытия основного дома опираются на балки террасы. Водосборная воронка располагается у стены основного дома, водосливная труба встраивается во внутреннюю стену 1-го этажа.

С открытых сторон вентилируемой террасы должны быть предусмотрены вентиляционные отверстия шириной не менее 30-40 мм. См. рис. 813a, b и c. Прохождение достаточного количества воздуха необходимо для отвода избыточной влаги. Чтобы обеспечить необходимый свес плоской кровли, на обвязочные балки террасы набивают в вертикальном направлении бруски. Толщина брусков должна быть в 5 раз больше вентиляционного зазора. Стойки ограждения террасы должны надежно крепиться к балкам террасы сквозь прибитые ранее бруски. См. рис. 813a. Если закрепить поручень ограждение террасы к стене основного дома невозможно или его длина ограждения составляет от 8 до 10 м, то перед тем как выбрать сечение стоек и тип деталей для крепления, необходимо провести детальный расчет, учитывающий актуальные моменты и нагрузки. Чтобы вода не стекала с открытых сторон террасы можно использовать в качестве бортиков рейку. В таком случае водонепроницаемое покрытие заводится поверх рейки. В качестве защиты от механически повреждений поверх рейки устанавливается металлический отлив. См. рис. 813b и c. На рис. 813c изображена та же конструкция вентилируемой террасы, что и на рис. 813b, только разрез сделан в поперечном направлении по отношению к балкам террасы. К тому же на рис. 813c показано устройство перелива применяющегося в качестве аварийного водоотвода с плоской кровли. Более подробно это было описано в пункте «Система водоотвода».

Места стыков мембранной ветро-, гидрозащиты должны быть приподняты (См. рис. 813c). Для этого вначале поверх балок террасы набивают рейки, на них укладывают ветро-, гидрозащитную мембрану с небольшим провисанием между балками (см. также рис. 21.), а затем зажимают мембрану с помощью еще одного слоя реек.

Рис. 813a. Устройство изолированной вентилируемой террасы с внутренней системой водоотвода. Открытая сторона. Разрез произведен вдоль балок террасы.

Рис. 813b. Устройство изолированной вентилируемой террасы с внутренней системой водоотвода. Открытая сторона оснащена бортиком. Разрез произведен вдоль балок террасы.

Рис. 813c. Устройство изолированной вентилируемой террасы с внутренней системой водоотвода. Открытая сторона оснащена бортиком. Разрез произведен поперек балок террасы.

8.2. Конструктивные решения для эксплуатируемой вентилируемой плоской кровли,террасы с наружными навесными водосточными желобами и настенными водосточными трубами

В южных районах, с малым количеством осадков в виде снега, в качестве наружной системы водоотвода с плоской кровли можно применять навесные водосточные желоба и настенные водосточные трубы. Также это касается тех случаев, когда терраса заведена под общую с домом кровлю или толщина теплоизоляционного слоя между балками террасы составляет минимум 250 мм. Сплошной настил вентилируемой террасы с наружной системой водоотвода должен выполняться с уклоном минимум 1:40 по направлению к навесным водосточным желобам. На рис. 822a. изображена такая конструкция вентилируемой террасы с наружной системой водоотвода, при которой балки террасы опираются на каркас несущей внутренней стены, а балки перекрытия основного дома опираются на балки террасы. Стык между водонепроницаемым покрытием плоской кровли и ветро-, гидрозащитным покрытием наружной стены основного дома должен быть герметичным. Для этого края водонепроницаемого покрытия заводят под ветрозащитное покрытие стены минимум на 150 мм и плотно прижимают рейкой. См. рис. 822a. Конструкция изолированной вентилируемой террасы с наружной системой водоотвода предусматривает, чтобы края водонепроницаемого покрытия плоской кровли заводились под дверной порог минимум на 50 мм (см. рис. 822b.). В тех местах, где заведенное под дверной порог водонепроницаемое может подвергнуться дополнительным механическим повреждениям, устанавливают защитные металлические отливы. С открытых сторон вентилируемой террасы должны быть предусмотрены вентиляционные отверстия шириной не менее 30-40 мм. См. рис. 823. Прохождение достаточного количества воздуха необходимо для отвода избыточной влаги. Чтобы обеспечить необходимый свес плоской кровли, на обвязочные балки террасы набивают в вертикальном направлении бруски. Толщина брусков должна быть примерно в 5 раз больше вентиляционного зазора. Стойки ограждения террасы должны надежно крепиться к балкам террасы сквозь прибитые ранее бруски. См. рис. 823. Если закрепить поручень ограждение террасы к стене основного дома невозможно или его длина ограждения составляет от 8 до 10 м, то перед тем как выбрать сечение стоек и тип деталей для крепления, необходимо провести детальный расчет, учитывающий актуальные моменты и нагрузки. Водонепроницаемое покрытие должно заводится поверх металлического отлива, устанавливаемого над наружной водосточной трубой (см. рис. 823).

Рис. 822a. Устройство изолированной вентилируемой террасы с наружной системой водоотвода. Балки террасы опираются на каркас несущей внутренней стены, а балки перекрытия основного дома опираются на балки террасы.

Рис. 822b. Устройство изолированной вентилируемой террасы с наружной системой водоотвода. Балки террасы опираются на каркас несущей внутренней стены, а балки перекрытия основного дома опираются на балки террасы. Края водонепроницаемого покрытия плоской кровли заводят под дверной порог минимум на 50 мм.

Рис. 823. Открытая сторона изолированной вентилируемой террасы с наружной системой водоотвода.

9.1. Список использованной литературы

1. Андерс Фрёструп, «Теория столярного дела. Деревянные конструкции», Гюльдендаль Ундервиснинг, Осло, 2008. 2. Свейн Тарье Колстад, Сивер Увслёк, Кнут Норенг, Ханна Ларсен, «Изолированные вентилируемые террасы с деревянным каркасом», СИНТЕФ, Осло, 2011. 3. Еврокод 5, EN 1995-1-1 «Проектирование деревянных конструкций», Британский институт по стандартизации, Лондон, 1995. 4. Еврокод 0, EN 1990 «Основы проектирования несущих конструкций», Британский институт по стандартизации, Лондон, 1990.

5. Еврокод 1, EN 1991 «Воздействия на несущие конструкции», Британский институт по стандартизации, Лондон, 1991.

Любое копирование, перепечатка и распространение материалов данной статьи без письменного разрешения автора запрещены. С уважением, © Владислав Воротынцев, 07.10.2013. [email protected] или [email protected]

Pdf версия статьи доступна для скачивания в библиотеке dwg.ru: http://dwg.ru/lib/425

Узнать расценки на изготовление каркасного дома  можно по телефону:

Тел.\факс. 8 (81369) 7-30-39,

моб.8(921)1836635, 8(904)5105468

Эксплуатируемая кровля или как сделать крышу двойного назначения

Andrey

2576 0 0

Плоская крыша — это площадка вашего дома, которой можно распорядиться с пользой. Единственное, нужно грамотно обустроить кровельный пирог, чтобы он не только защищал от влаги, но и выдерживал механическую нагрузку. Поэтому, если вы обладаете домом с такой крышей, предлагаю разобраться как выполняется эксплуатируемая кровля.

Плоская крыша может стать местом для отдыха в теплое время года

Зачем делать эксплуатируемую кровлю

Эксплуатируемую кровлю имеет смысл выполнять городским жителям, а также дачникам, если размеры участка ограничены. Как правило, дополнительную площадку используют в следующих целях:

  • В качестве зоны отдыха. Это наиболее распространенный вариант применения плоской кровли. Дело в том, что здесь можно поставить не только столик и лавочки, но и установить целую беседку, уложить газоны или даже сделать бассейн;
  • В качестве спортивной площадки. На крыше можно установить спортивные тренажеры или даже оборудовать площадку для тенниса, если, конечно, площадь этому способствует;

На крыше можно выращивать растения

  • Для выращивания растений. На крыше можно обустроить клумбы с цветами, сделать теплицу или даже зимний сад.

При желании можно придумать и другие варианты использования этого пространства или комбинировать несколько, если площадь большая. Но, какому бы из них вы не отдали предпочтение, как я уже сказал выше, необходимо грамотно уложить кровельный пирог.

Существует несколько способов устройства пирога. В настоящее время чаще всего применяют следующие из них:

  • Кровля с жестким покрытием;
  • Инверсионная крыша;
  • Зеленая крыша.

Далее рассмотрим все эти варианты.

Крыша с жестким покрытием превращается в террасу

Кровля с жестким покрытием

Процесс устройства жесткого кровельного пирога включает в себя несколько этапов:

Этапы устройства эксплуатируемой кровли с жестким покрытием

Подготовка материалов

Для устройства эксплуатируемой крыши в нашем случае понадобятся такие материалы:

  • Рулонное битумное покрытие, которое обеспечит гидроизоляционный слой;
  • Битумный праймер.
  • Профилированная (дренажная) мембрана;
  • Экструдированный пенополистирол;
  • Геотекстиль.

К слову, все эти материалы понадобятся и для устройства других типов кровельных пирогов. Поэтому далее повторяться не буду.

Экструдированный пенополистирол не боится влаги и устойчив к механическим воздействиям

Финишное покрытие может быть разным, к примеру, зачастую используют тротуарную плитку, которая укладывается на песок. Более универсальным решением является стяжка, поверх которой можно уложить любой материал.

Гидроизоляция крыши

Гидроизоляция кровли осуществляется так:

Иллюстрации Действия
Нанесение праймера. Обработайте поверхность крыши битумным праймером.

До начала гидроизоляционных работ плита перекрытия должны быть тщательно подготовлена – на ней не должно быть грязи, трещин и сколов.

Укладка гидроизоляции. Раскатайте на крыше гидроизоляционный битумный материал. Если он не самоклеящийся. Для его приклеивания разогрейте тыльную сторону паяльной лампой или, к примеру, феном.
Укладка профилированной мембраны. Раскатайте поверх гидроизоляционного слоя профилированную мембрану, которая образует дренажный слой.

Укладка покрытия

Теперь плоская кровля гидроизолирована, можно приступать к укладке основной части пирога:

Иллюстрации Действия
Теплоизоляция:
  • Уложите поверх мембраны экструдированный пенополистирол;
  • Застелите поверхность утеплителя геотекстилем.
Укладка финишного покрытия:
  • Поверх теплоизоляционного слоя насыпьте слой песка толщиной сантиметров 15-20;
  • Тщательно песок утрамбуйте;
  • Уложите поверх песка тротуарную плитку.

На этом устройство эксплуатируемой крыши завершено, теперь осталось только ее оборудовать. Как я уже говорил, вместо песка и плитки вы может залить поверхность стяжкой, и затем покрыть любым отделочным материалом, к примеру, керамической плиткой.

Если вы хотите обустроить на крыше спортплощадку, можно залить стяжку и покрыть ее резиновой краской. Это покрытие очень эластичное и даже мягкое на ощупь, в результате чего на такой площадке удобно заниматься спортом. К тому же, резиновая краска будет дополнительно защищать крышу от влаги.

В качестве финишного покрытия можно использовать резиновую краску

Инверсионная крыша

Инверсионная крыша укладывается практически так, как и вышеописанная, с той лишь разницей, что поверх слоя геотекстиля насыпается сыпучий материал — гравий или щебень. По сути, вышеописанный пирог тоже является инверсионным, так как гидроизоляционный материал расположен под утеплителем. Однако инверсионными крышами принято называть кровли с сыпучими материалами сверху.

Схема пирога инверсионной кровли

Рассматривать технологию монтажа этого кровельного пирога не будем, так как она аналогична вышеописанной процедуре, кроме, как я уже сказал, последнего пункта.

Крыша-газон

Зеленая крыша во многом выполняется так же, как и две вышеописанные, так как в основе используется все тот же инверсионный принцип. Единственное, она требует не стандартной разуклонки в пару градусов, а уклона как минимум градуса на 4.

На схеме конструкция зеленой кровли

Поэтому работа начинается с выполнения разуклонки следующим образом:

Иллюстрации Действия
Выполнение уклона:
  • Засыпьте крышу слоем керамзита. Толщина должна быть такой, чтобы можно было обеспечить необходимый уклон;
  • Выровняйте поверхность и сделает уклон в 5-6 см на метр.
Заливка стяжки:
  • Установите направляющие, выставив их с уклоном в одной плоскости;
  • Залейте цементно-песчаный раствор и выровняйте его правилом по маякам.

После заливки стяжки нужно дождаться пока она застынет. Дальнейшие действия выполняются по описанной выше схеме в такой последовательности:

Этапы устройства зеленой кровли

Если в качестве утеплителя будет использоваться слой минеральной ваты или пенопласта, с двух его сторон необходимо уложить пароизоляционную пленку.

Рассматривать как выполняются все эти действия не будем, так как о них я уже рассказал. Как вы заметили, отличается лишь последовательность.

После подготовки поверхности кровли вам останется высадить растения. Можно использовать семена или даже уложить готовый газон.

Надо сказать, что не обязательно всю крышу покрывать газоном. Отдельные участки можно выложить плиткой или другим финишным материалом.

Вывод

Теперь вы знаете как выполняется эксплуатируемая кровля, и можете обустроить ее самостоятельно. А если в процессе работы столкнетесь с какими-либо сложностями, обращайтесь ко мне в комментариях, и я с радостью помогу вам советом.

9 декабря 2017г.

Если вы хотите выразить благодарность, добавить уточнение или возражение, что-то спросить у автора - добавьте комментарий или скажите спасибо!

Вентилируемая эксплуатируемая каркасная плоская кровля терраса

Вентилируемая эксплуатируемая каркасная плоская кровля терраса

Добавлено: 15.04.2015 | Автор: Владислав Воротынцев

В этой статье речь идет об эксплуатируемой вентилируемой террасе, устроенной на деревянных балках над отапливаемым помещением как с внутренней, так и с наружной системой водоотвода.

Терраса над помещением является одним из наиболее сложных элементов, как для проектирования, так и для возведения, имеет структуру аналогичную плоской кровле и выполняет те же функции. Одним из преимуществ вентилируемой конструкции террасы является то, что все изоляционные материалы находятся между балками перекрытия, что существенно снижает толщину внешних слоев. Также вентилируемая конструкция террасы позволяет отводить избыточную влагу из перекрытия.

Конструкция вентилируемой террасы должна соответствовать следующим условиям: — вентилируемая терраса должна выступать за контуры основного дома. См. рис. 132a. Разрешается лишь частичное встраивание террасы на расстояние менее 1 м. См. рис. 132b. Это является необходимым условием для прохождения достаточного количества воздуха во всех частях вентиляционного зазора. — при устройстве вентилируемой террасы вентиляционный зазор создается с помощью двойной обрешетки. С открытых сторон вентилируемой террасы должны быть предусмотрены вентиляционные отверстия. Прохождение достаточного количества воздуха необходимо для отвода избыточной влаги. — конструкция вентилируемой террасы не должна допускать попадания влаги из осадков внутрь перекрытия. Для этого нужно использовать специальные ветро-, гидрозащитные мембраны, однако они не должны препятствовать выходу пара из утеплителя. Для настила под водонепроницаемое покрытие пола, нужно использовать влагостойкие материалы, например, плиты класса OSB-3. — если есть опасность таянья большого количества снега на поверхности террасы, то в таком случае нужно предусмотреть систему внутреннего водоотвода, встроенную в само перекрытие. В южных районах, с малым количеством осадков в виде снега, можно применять навесные водосточные желоба и настенные водосточные трубы, также это касается тех случаев, когда терраса заведена под общую с домом кровлю или толщина теплоизоляционного слоя составляет минимум 250 мм.

— уровень пола террасы должен быть примерно на 50 мм ниже уровня пола внутри дома.

Рис. 132a и b. Расположение террасы по отношению к основному дому.

Несущая конструкция вентилируемой плоской кровли, террасы

Перекрытие, являющееся основанием изолированной вентилируемой террасы, должно состоять из деревянных балок с сечением, удовлетворяющим требования прочности и жесткости. При расчетах нужно отталкиваться от минимально возможной высоты балок составляющих несущий каркас террасы, это нужно для того чтобы снизить уровень пола примерно на 50 мм по отношению к полу внутри дома. Чтобы увеличить несущую способность перекрытия можно уменьшить шаг несущих балок. При выборе сечения несущих балок изолированной вентилируемой террасы нужно помнить, что высота балки должна быть равна расчетной толщине теплоизоляционного слоя. См. рис. 21. Содержание влаги в несущих балках во время сборки перекрытия не должно превышать 15%.

​

Рис. 21. Устройство изолированной вентилируемой террасы на деревянных балках.

Рис. 23. Пол террасы.

Рис. 812a. Устройство изолированной вентилируемой террасы с внутренней системой водоотвода расположенной на выступающих балках перекрытия основного дома.Водонепроницаемое покрытие террасы заводится минимум на 150 мм под дверной порог.

Рис. 812b. Устройство изолированной вентилируемой террасы с внутренней системой водоотвода. Балки террасы опираются на каркас несущей внутренней стены, а балки перекрытия основного дома опираются на балки террасы. Водосборная воронка располагается у стены основного дома, водосливная труба встраивается во внутреннюю стену 1-го этажа.

С открытых сторон вентилируемой террасы должны быть предусмотрены вентиляционные отверстия шириной не менее 30-40 мм. См. рис. 813a, b и c. Прохождение достаточного количества воздуха необходимо для отвода избыточной влаги. Чтобы обеспечить необходимый свес плоской кровли, на обвязочные балки террасы набивают в вертикальном направлении бруски. Толщина брусков должна быть в 5 раз больше вентиляционного зазора. Стойки ограждения террасы должны надежно крепиться к балкам террасы сквозь прибитые ранее бруски. См. рис. 813a. Если закрепить поручень ограждение террасы к стене основного дома невозможно или его длина ограждения составляет от 8 до 10 м, то перед тем как выбрать сечение стоек и тип деталей для крепления, необходимо провести детальный расчет, учитывающий актуальные моменты и нагрузки. Чтобы вода не стекала с открытых сторон террасы можно использовать в качестве бортиков рейку. В таком случае водонепроницаемое покрытие заводится поверх рейки. В качестве защиты от механически повреждений поверх рейки устанавливается металлический отлив. См. рис. 813b и c. На рис. 813c изображена та же конструкция вентилируемой террасы, что и на рис. 813b, только разрез сделан в поперечном направлении по отношению к балкам террасы. К тому же на рис. 813c показано устройство перелива применяющегося в качестве аварийного водоотвода с плоской кровли. Более подробно это было описано в пункте «Система водоотвода».

Места стыков мембранной ветро-, гидрозащиты должны быть приподняты (См. рис. 813c). Для этого вначале поверх балок террасы набивают рейки, на них укладывают ветро-, гидрозащитную мембрану с небольшим провисанием между балками (см. также рис. 21.), а затем зажимают мембрану с помощью еще одного слоя реек.

Рис. 813a. Устройство изолированной вентилируемой террасы с внутренней системой водоотвода. Открытая сторона. Разрез произведен вдоль балок террасы.

Рис. 813b. Устройство изолированной вентилируемой террасы с внутренней системой водоотвода. Открытая сторона оснащена бортиком. Разрез произведен вдоль балок террасы.

Рис. 813c. Устройство изолированной вентилируемой террасы с внутренней системой водоотвода. Открытая сторона оснащена бортиком. Разрез произведен поперек балок террасы.

Рис. 822a. Устройство изолированной вентилируемой террасы с наружной системой водоотвода. Балки террасы опираются на каркас несущей внутренней стены, а балки перекрытия основного дома опираются на балки террасы.

Рис. 822b. Устройство изолированной вентилируемой террасы с наружной системой водоотвода. Балки террасы опираются на каркас несущей внутренней стены, а балки перекрытия основного дома опираются на балки террасы. Края водонепроницаемого покрытия плоской кровли заводят под дверной порог минимум на 50 мм.

Рис. 823. Открытая сторона изолированной вентилируемой террасы с наружной системой водоотвода.

Вентилируемая эксплуатируемая каркасная плоская кровля терраса

Добавлено: 15.04.2015 | Автор: Владислав Воротынцев

В этой статье речь идет об эксплуатируемой вентилируемой террасе, устроенной на деревянных балках над отапливаемым помещением как с внутренней, так и с наружной системой водоотвода.

Терраса над помещением является одним из наиболее сложных элементов, как для проектирования, так и для возведения, имеет структуру аналогичную плоской кровле и выполняет те же функции. Одним из преимуществ вентилируемой конструкции террасы является то, что все изоляционные материалы находятся между балками перекрытия, что существенно снижает толщину внешних слоев. Также вентилируемая конструкция террасы позволяет отводить избыточную влагу из перекрытия.

Конструкция вентилируемой террасы должна соответствовать следующим условиям: — вентилируемая терраса должна выступать за контуры основного дома. См. рис. 132a. Разрешается лишь частичное встраивание террасы на расстояние менее 1 м. См. рис. 132b. Это является необходимым условием для прохождения достаточного количества воздуха во всех частях вентиляционного зазора. — при устройстве вентилируемой террасы вентиляционный зазор создается с помощью двойной обрешетки. С открытых сторон вентилируемой террасы должны быть предусмотрены вентиляционные отверстия. Прохождение достаточного количества воздуха необходимо для отвода избыточной влаги. — конструкция вентилируемой террасы не должна допускать попадания влаги из осадков внутрь перекрытия. Для этого нужно использовать специальные ветро-, гидрозащитные мембраны, однако они не должны препятствовать выходу пара из утеплителя. Для настила под водонепроницаемое покрытие пола, нужно использовать влагостойкие материалы, например, плиты класса OSB-3. — если есть опасность таянья большого количества снега на поверхности террасы, то в таком случае нужно предусмотреть систему внутреннего водоотвода, встроенную в само перекрытие. В южных районах, с малым количеством осадков в виде снега, можно применять навесные водосточные желоба и настенные водосточные трубы, также это касается тех случаев, когда терраса заведена под общую с домом кровлю или толщина теплоизоляционного слоя составляет минимум 250 мм.

— уровень пола террасы должен быть примерно на 50 мм ниже уровня пола внутри дома.

Рис. 132a и b. Расположение террасы по отношению к основному дому.

Page 2

Водонепроницаемое покрытие террасы должно располагаться под уклоном минимум 1:40 по направлению к желобам. Желоба должны иметь уклон минимум 1:60 по направлению к водосборной воронке. При этом деревянные щиты, устанавливаемые для защиты водонепроницаемого покрытия от механических повреждений, не должны мешать оттоку дождевой воды. См. рис. 23. В южных районах, с малым количеством осадков выпадающих в виде снега, в качестве системы водоотвода можно применять навесные водосточные желоба и настенные водосточные трубы, также это касается тех случаев, когда терраса заведена под общую с домом кровлю или толщина теплоизоляционного слоя перекрытия составляет более 250 мм. Для защиты наружной системы отвода воды от промерзания можно спроектировать электрическую систему обогрева.

Если есть опасность таянья большого количества снега на поверхности террасы, то в таком случае нужно предусмотреть систему внутреннего водоотвода, встроенную в само перекрытие. Внутренняя система водоотвода избавлена от проблемы замерзания. Конструктивно, она состоит из водосборной воронки, водосливной трубы («стояка») и выпуска – участка трубопровода для отвода атмосферных сточных вод в сеть ливневой канализации.

На рис. 812a и b показана наиболее распространенная конструкция внутренней системы водоотвода. Водосборная воронка установлена у наружной стены дома, потому что там в первую очередь происходит таянье снега, там расстояние до внутренней стены нижнего этажа будет наименьшим. Водосливная труба должна располагаться во внутренней стене находящейся этажом ниже, если это не представляется возможным, то ее монтируют с теплой стороны наружной стены строения. Водосточный желоб должен идти вдоль двери или вдоль высоких окон, минимальная длина желоба должна быть не менее ширины проема. Рекомендуется монтировать водосточный желоб по всей ширине террасы. Верхний уровень желоба направленного к воронке должен быть на 150 мм ниже водонепроницаемого покрытия заведенного под дверной порог или под высокие окна. Ширина водосточного желоба должна быть такой, чтобы было достаточно места для монтажа водосборной воронки. Водосборная воронка устанавливается в самой нижней точке поверхности плоской кровли, там, где в первую очередь происходит таянье льда, и соединяется с водосливной трубой, образуя герметичное соединение. В месте прохождения сквозь ветро-, гидрозащитную мембрану водосливная труба должна уплотняться резиновой манжетой. См. рис. 812b. Для того, что бы стояк водосточной системы не засорялся различным мелким мусором, сверху на водосборную воронку монтируют специальную решетку.

В зависимости от типа водосборной воронки применяются различные способы крепления: вклеивание и прижим с помощью нержавеющих шурупов.

Водосборная воронка с прижимным кольцом: ​

Водосборная воронка с прижимным кольцом закрепляется таким образом, чтобы была обеспечена возможность свободного хода выпускного патрубка водосборной воронки внутри водосливной трубы («стояка»). Это делается для того, чтобы воронка не выпирала над поверхностью водонепроницаемого покрытия в случае усадки несущих деревянных конструкция перекрытия.

​Водосборная воронка с уплотнительной манжетой, наклеенной на фланец:

​

Монтаж водосборной воронки с уплотнительной манжетой, наклеенной на фланец, производят таким образом, чтобы водонепроницаемое покрытие кровли приклеивалось поверх уплотнительной манжеты с нахлестом минимум в 50 мм. В каждом из вышеперечисленных случаев, по окончании работ следует провести испытания системы водоотвода водой подающейся под давление. Количество водосборных воронок и диаметр сливной трубы рассчитываются исходя из конструктивных особенностей кровли и интенсивности атмосферных осадков для заданной местности. В качестве аварийного водоотвода с кровли, в случае засора основной системы водостока применяют переливы. Перелив применяют в тех случая, когда конструкция плоской кровли подобна той, что изображена на рис. 813c. Перелив располагают в самой нижней точки поверхности кровли и приваривают к водонепроницаемому покрытию кровли.

Перелив: ​

Page 3

Сплошной настил вентилируемой террасы с внутренней системой водоотвода должен выполняться с уклоном минимум 1:40 по направлению к водосточному желобу, расположенному у внутренней стены дома. См. рис. 812a и b. На рисунке 812a показано устройство вентилируемой террасы расположенной на выступающих балках перекрытия основного дома. Уровень пола во внутренне помещении поднят до такой высоты, чтобы водонепроницаемое покрытие террасы заводилось минимум на 150 мм под дверной порог, при этом разница в уровне полов должна быть приемлемой. В деревянном щите, расположенном над водосточным желобом используют узкие террасные доски, уложенные с зазором минимум 5 мм, чтобы обеспечить хорошие условия для оттока дождевой воды. Террасные доски над водосточным желобом должны крепиться таким образом, чтобы их можно было снимать для прочистки желоба и водоприемной воронки. В качестве альтернативного решения над водосточным желобом можно использовать съемную решетку. См. рис. 812b. Парозащита теплоизоляции перекрытия выполняется с помощью вертикально установленных плит теплоизоляции обернутых с трех сторон в парозащитную пленку. См. рис. 812a. Плиты теплоизоляции должны нарезаться таким образом, чтобы плотно заполнить весь проем.

На рис. 812b. изображена несколько иная конструкция вентилируемой террасы. В данном случае, балки террасы опираются на каркас несущей внутренней стены, а балки перекрытия основного дома опираются на балки террасы.

Рис. 812a. Устройство изолированной вентилируемой террасы с внутренней системой водоотвода расположенной на выступающих балках перекрытия основного дома.Водонепроницаемое покрытие террасы заводится минимум на 150 мм под дверной порог.

Рис. 812b. Устройство изолированной вентилируемой террасы с внутренней системой водоотвода. Балки террасы опираются на каркас несущей внутренней стены, а балки перекрытия основного дома опираются на балки террасы. Водосборная воронка располагается у стены основного дома, водосливная труба встраивается во внутреннюю стену 1-го этажа.

С открытых сторон вентилируемой террасы должны быть предусмотрены вентиляционные отверстия шириной не менее 30-40 мм. См. рис. 813a, b и c. Прохождение достаточного количества воздуха необходимо для отвода избыточной влаги. Чтобы обеспечить необходимый свес плоской кровли, на обвязочные балки террасы набивают в вертикальном направлении бруски. Толщина брусков должна быть в 5 раз больше вентиляционного зазора. Стойки ограждения террасы должны надежно крепиться к балкам террасы сквозь прибитые ранее бруски. См. рис. 813a. Если закрепить поручень ограждение террасы к стене основного дома невозможно или его длина ограждения составляет от 8 до 10 м, то перед тем как выбрать сечение стоек и тип деталей для крепления, необходимо провести детальный расчет, учитывающий актуальные моменты и нагрузки. Чтобы вода не стекала с открытых сторон террасы можно использовать в качестве бортиков рейку. В таком случае водонепроницаемое покрытие заводится поверх рейки. В качестве защиты от механически повреждений поверх рейки устанавливается металлический отлив. См. рис. 813b и c. На рис. 813c изображена та же конструкция вентилируемой террасы, что и на рис. 813b, только разрез сделан в поперечном направлении по отношению к балкам террасы. К тому же на рис. 813c показано устройство перелива применяющегося в качестве аварийного водоотвода с плоской кровли. Более подробно это было описано в пункте «Система водоотвода».

Места стыков мембранной ветро-, гидрозащиты должны быть приподняты (См. рис. 813c). Для этого вначале поверх балок террасы набивают рейки, на них укладывают ветро-, гидрозащитную мембрану с небольшим провисанием между балками (см. также рис. 21.), а затем зажимают мембрану с помощью еще одного слоя реек.

Рис. 813a. Устройство изолированной вентилируемой террасы с внутренней системой водоотвода. Открытая сторона. Разрез произведен вдоль балок террасы.

Рис. 813b. Устройство изолированной вентилируемой террасы с внутренней системой водоотвода. Открытая сторона оснащена бортиком. Разрез произведен вдоль балок террасы.

Рис. 813c. Устройство изолированной вентилируемой террасы с внутренней системой водоотвода. Открытая сторона оснащена бортиком. Разрез произведен поперек балок террасы.

Page 4

В южных районах, с малым количеством осадков в виде снега, в качестве наружной системы водоотвода с плоской кровли можно применять навесные водосточные желоба и настенные водосточные трубы. Также это касается тех случаев, когда терраса заведена под общую с домом кровлю или толщина теплоизоляционного слоя между балками террасы составляет минимум 250 мм. Сплошной настил вентилируемой террасы с наружной системой водоотвода должен выполняться с уклоном минимум 1:40 по направлению к навесным водосточным желобам. На рис. 822a. изображена такая конструкция вентилируемой террасы с наружной системой водоотвода, при которой балки террасы опираются на каркас несущей внутренней стены, а балки перекрытия основного дома опираются на балки террасы. Стык между водонепроницаемым покрытием плоской кровли и ветро-, гидрозащитным покрытием наружной стены основного дома должен быть герметичным. Для этого края водонепроницаемого покрытия заводят под ветрозащитное покрытие стены минимум на 150 мм и плотно прижимают рейкой. См. рис. 822a. Конструкция изолированной вентилируемой террасы с наружной системой водоотвода предусматривает, чтобы края водонепроницаемого покрытия плоской кровли заводились под дверной порог минимум на 50 мм (см. рис. 822b.). В тех местах, где заведенное под дверной порог водонепроницаемое может подвергнуться дополнительным механическим повреждениям, устанавливают защитные металлические отливы. С открытых сторон вентилируемой террасы должны быть предусмотрены вентиляционные отверстия шириной не менее 30-40 мм. См. рис. 823. Прохождение достаточного количества воздуха необходимо для отвода избыточной влаги. Чтобы обеспечить необходимый свес плоской кровли, на обвязочные балки террасы набивают в вертикальном направлении бруски. Толщина брусков должна быть примерно в 5 раз больше вентиляционного зазора. Стойки ограждения террасы должны надежно крепиться к балкам террасы сквозь прибитые ранее бруски. См. рис. 823. Если закрепить поручень ограждение террасы к стене основного дома невозможно или его длина ограждения составляет от 8 до 10 м, то перед тем как выбрать сечение стоек и тип деталей для крепления, необходимо провести детальный расчет, учитывающий актуальные моменты и нагрузки.

Водонепроницаемое покрытие должно заводится поверх металлического отлива, устанавливаемого над наружной водосточной трубой (см. рис. 823).

Рис. 822a. Устройство изолированной вентилируемой террасы с наружной системой водоотвода. Балки террасы опираются на каркас несущей внутренней стены, а балки перекрытия основного дома опираются на балки террасы.

Рис. 822b. Устройство изолированной вентилируемой террасы с наружной системой водоотвода. Балки террасы опираются на каркас несущей внутренней стены, а балки перекрытия основного дома опираются на балки террасы. Края водонепроницаемого покрытия плоской кровли заводят под дверной порог минимум на 50 мм.

Рис. 823. Открытая сторона изолированной вентилируемой террасы с наружной системой водоотвода.

Page 5

Цель работы. Изучение устройства и работы кормораздатчика мобильного электрифицированного КС-1,5, частичная разборка-сборка, регулировки, подготовка к работе, выполнение операций технического обслуживания и оценка его технического состояния.

Оборудование, инструмент и наглядные пособия. Кормораздатчик мобильный электрифицированный КС-1,5, набор слесарного инструмента, плакаты, учебные пособия, инструкционно-технологическая карта.

Содержание работы.

1. Изучить устройство и работу кормораздатчика мобильного электрифицированного КС-1,5 и его основные сборочные единицы.

2. Провести частичную разборку-сборку кормораздатчика, подготовить его к работе.

3. Включить кормораздатчик в работу и после его остановки выполнить операции технического обслуживания.

4. Составить и сдать отчет о проделанной работе.

Методические указания к работе. Кормораздатчик КС-1,5 предназначен для перемещения и раздачи влажных кормовых смесей всем возрастным группам свиней на репродукторных и небольших откормочных свиноводческих фермах во всех климатических зонах страны.

Раздатчик загружают кормами, поступающими из кормоцеха в приготовленном виде влажностью 60...80 %. При отсутствии на ферме кормоцеха кормораздатчик может быть использован для приготовления и раздачи влажных мешанок полужидких и сухих кормов. В этом случае их загрузка в бункер производится шнековыми или скребковыми транспортерами. Машину обслуживает один человек.

Кормораздатчик КС-1,5 (рис. 26) состоит из следующих сборочных единиц: ходовой части 1; бункера 8; левого выгрузного шнека 3; правого выгрузного шнека 4; шнека-мешалки 10; лопастной мешалки 7; распределительной коробки 2; электрооборудования 13.

Ходовая часть представляет собой самоходную тележку с электрическим приводом; состоит из рамы, ведомой и ведущей колесных пар, мотор-редуктора, цепной передачи, тормоза ленточного, устройства для автоматической остановки кормораздатчика при наезде на препятствие (людей, животных), состоящего из кронштейна, качающей рамки и конечного выключателя.

При раздаче корма в индивидуальные кормушки пользуются тормозным ленточным устройством.

При нажатии ногой на педаль ленточного тормоза срабатывает конечный выключатель и отключается электродвигатель привода ходовой части, при этом раздатчик останавливается в заданном месте.

Бункер вместимостью 2 м3 состоит из верхнего и нижнего поясов, среднего цилиндрического пояса. Днище снабжено выгрузными окнами, перекрываемыми дозирующим устройством. Форма бункера обеспечивает хорошую текучесть материала и полное его опорожнение от корма.

Рис. 26. Кормораздатчик КС-1,5:

1 – ходовая часть; 2 – распределительная коробка; 3,4 – шнеки выгрузные; 5 – мотор-редуктор; 6 – устройство для автоматической остановки кормораздатчика; 7 – лопастная мешалка; 8 – бункер; 9 – траверса; 10 – шнек-мешалка; 11 – разравниватель; 12 – пульт управления; 13 – электрооборудование; 14 – таблица; 15 – шкала; 16 – штурвал.

В бункере смонтированы шнековая и лопастная мешалки, а к его днищу прикреплены выгрузные шнеки и распределительная коробка.

В передней части бункера в шкафу расположены электрическая аппаратура и пульт управления.

Выгрузные шнеки 3 и 4 предназначены для выдачи корма из бункера в кормушки: каждый из них состоит из корпуса, шнека, привода, дозирующего устройства и опор.

Привод для передачи вращения шнеку состоит из электродвигателя и клиноременной передачи.

Дозирующее устройство состоит из заслонки и специального уплотнения.

Величину открытия заслонки определяют по указательной стрелке.

Шнек-мешалка 10 вместе с лопастной мешалкой предназначены для перемешивания корма в бункере и его равномерной подачи на раздающие шнеки. Шнек-мешалка состоит из вертикального шнека и самоцентрирующейся опоры.

Нижняя часть вала шнека-мешалки соединяется при помощи шлицевого соединения с выходным валом второй ступени распределительной коробки, а верхняя фиксируется в бункере траверсой 9 (см. рис. 26).

Шнек-мешалка приводится в действие от мотор-редуктора 5 через распределительную коробку 2.

Разравниватель 11 на верхней части вала шнека служит для равномерного распределения корма по периметру бункера.

Лопастная мешалка предназначена для перемешивания нижних слоев корма с последующей подачей их к вертикальному шнеку-мешалке, а также для равномерной подачи корма к выгрузным шнекам.

Лопастная мешалка состоит из ступицы, лопастей и устройства от сводообразования. Привод мешалки осуществляется от мотор-редуктор а через распределительную коробку.

Распределительная коробка предназначена для передачи крутящего момента рабочим органам. Она состоит из корпуса, крышки, входного вала с шестерней, выходного вала с зубчатым колесом, шестерни второй ступени, зубчатого колеса второй ступени, входного вала второй ступени. Валы первой ступени вращаются в конических подшипниках, валы второй ступени – в шарикоподшипниках. Уровень масла проверяют маслоуказателем. Отработанное масло опускают через отверстие в днище корпуса редуктора.

В состав электрооборудования входят: пускозащитная аппаратура, пульт управления, электродвигатель привода смесителя, электродвигатель привода ходовой части, электродвигатель выгрузных шнеков, защитно-отключающего устройства ЗОУП-25, предназначенного для защиты людей и животных от поражения электрическим током при трехфазных несимметрических и двухфазных замыканиях на землю. Конечный выключатель ВПК-2111 предназначен для периодической остановки машины во время раздачи корма в индивидуальные кормушки, а конечный выключатель ВК-300А – для автоматической остановки кормораздатчика при наезде на препятствие.

Электроэнергия к кормораздатчику поступает по кабелю, уложенному в специальном желобе, размещенном вдоль всей длины кормового прохода.

Пускозащитная аппаратура смонтирована на панели установленной в шкафу электрооборудования.

Технологический процесс(рис. 27) раздачи корма начинается с загрузки машины кормами, которые поступают из кормоцеха, сблокированного со свинарником, или с заготовительного отделения при помощи транспортера.

Рис. 27 принципиально-технологическая схема работы

кормораздатчика КС-1,5

Перед загрузкой бункера кормами необходимо закрыть шиберными заслонками выгрузные окна и включить в ра­боту привод мешалки.

После окончания процесса перемешивания открываются шиберные заслонки и включается скорость перемещения, а затем – привод выгрузных шнеков, привод ходовой части и начинается раздача корма в кормушки. Раздача может производиться одним шнеком или обоими одновременно.

Регулировки. Дозирующие устройства в виде шиберных заслонок на выгрузных шнеках обеспечивают широкий диапазон нормы выдачи корма в кормушки.

Подготовка к работе. Проверяют: натяжение цепей и клиноременной передачи; крепление сборочных единиц кормораздатчика; работу тормозного устройства; работу шиберных заслонок. Мегомметром проверяют сопротивление изоляции электродвигателей; сопротивление должно быть не менее 0,5 МОм. При необходимости подтягивают болтовые соединения.

Смазывают кормораздатчик по схеме смазки.

Включают кормораздатчик нажатием на кнопку «пуск» и подают питание на пульт управления, установив пакетно-кулачковый выключатель в положение «вверх», при этом загорается сигнальная лампочка. Мешалку включают, нажав кнопку «смеситель» на пульте управления.

При необходимости приготовления кормовой смеси непосредственно в кормораздатчике загрузку начинают с жидких компонентов смеси.

Перед раздачей корма нажимают на кнопку «вперед» поста управления и одновременно включают в работу раздающие шнеки. С помощью штурвала 16 (рис. 26) по шкале 15 открывают шиберные заслонки. По мере продвижения раздатчика вдоль кормушек в них поступает корм.

По окончании раздачи корма в кормушки перекрывают горловины раздающих шнеков заслонки, отключают мешалку и раздающие шнеки.

Нажатием на кнопку «назад» возвращают раздатчик в исходное положение. После раздачи корма бункер кормораздатчика промывают теплой водой.

Техническое обслуживание (ежедневное и периодическое). При ежедневном техническом обслуживании вы­полняют следующие операции: очищают от остатков корма бункер и раздающие шнеки. Проверяют натяжение ремней привода выгрузных шнеков и цепи привода ходовой части; уровень масла в редукторах; гайки и болты крепления узлов; надежность заземления электрооборудования. Перед загрузкой корма осматривают бункер и при обнаружении в нем посторонних предметов удаляют их.

Через 30 дней при первом техническом обслуживании проводят все работы, предусмотренные ежедневным техническим обслуживанием, и выполняют дополнительные операции. Открывают заливные пробки редукторов и проверяют уровень масла. Смазывают детали кормораздатчика в соответствии с таблицей и схемой смазки. Проверяют крепление лопастного колеса, техническое состояние редукторов и уплотнения в подшипниках, тормозное устройство, состояние изоляции электродвигателей, сопротивление контура повторного заземления, сопротивление изоляции по отношению к токоведущим частям.

Через шесть месяцев при втором техническом обслуживании выполняют все операции, предусмотренные техническим обслуживанием, проводимым через 30 дней, и дополнительные операции. Тщательно промывают водой все детали. Выпускают отработанное масло из редукторов, промывают керосином или дизельным топливом и заменяют новым. Тщательно осматривают детали. Смазывают детали в соответствии со схемой и таблицей смазки. Ремни заменяют новыми.

Page 6

Цель работы. Изучение устройства и работы транспортера-раздатчика внутри кормушек ТВК-80Б, частичная разборка-сборка, регулировки, подготовка к работе, выполнение операций технического обслуживания и оценка его технического состояния.

Оборудование, инструмент и наглядные пособия. Транспортер-раздатчик внутри кормушек ТВК-80Б, набор слесарного инструмента, плакаты, учебные пособия, инструкционно-технологическая карта.

Содержание работы.

1. Изучить устройство и работу транспортера-раздатчика внутри кормушек ТВК-80Б и его основных сборочных единиц.

2. Провести частичную разборку-сборку транспортера-раздатчика и подготовить его к работе.

3. Включить транспортер-раздатчик в работу и после его остановки выполнить операции технического обслуживания, дав оценку его технического состояния.

4. Составить и сдать отчет о проделанной работе.

Методические указания к работе. Стационарный транспортер-раздатчик внутри кормушек ТВК.-80Б предназначен для раздачи всех видов кормов, кроме жидких, на фермах крупного рогатого скота. Один оператор одновременно обслуживает 60 коров.

Транспортер-раздатчик ТВК-80Б (рис. 28) состоит из приводной станции 1, кормового желоба 2, рабочего органа 3, натяжной станции 4, электрооборудования.

Привод транспортера-раздатчика состоит из рамы, приводной станции, устройства для сбрасывания цепи, конечных выключателей. Рама крепится при помощи фундаментных болтов к фундаменту. Вращение ведущего вала осуществляется от приводной станции цепью и звездочками. Натяжение цепи регулируют перемещением мотор-редуктора. Цепная передача закрыта кожухом.

Станция натяжная служит для натяжения рабочего органа транспортера-раздатчика. Станция натяжная состоит из рамы, натяжного барабана, бункера. Натяжение рабочего органа транспортера-раздатчика регулируют перемещением оси натяжного барабана в пазах рамы с помощью натяжных винтов.

Рабочий орган служит для перемещения корма по кормовому желобу. Рабочий орган представляет собой замкнутый контур, состоящий из ленты и пластинчатой цепи. Предохранительное устройство рассоединяет цепь со звездочкой при выходе из строя концевого выключателя.

Желоб одновременно служит кормушками; собирается из щитов, к которым прикреплены кронштейны поилок.

Электрооборудование предназначено для управления работой транспортера-раздатчика; состоит из шкафа управления, установленного на стене со стороны привода, поста управления, установленного на стене со стороны загрузочного бункера, кабеля, коробки ответвле­ния. Посты управления, расположенные в шкафу и со стороны разгрузочного бункера, блокированы.

Рис. 28. Принципиально-технологическая схема

кормораздатчика ТВК-80Б:

1 – приводная станция; 2 – желоб кормовой; 3 – рабочий орган; 4 – натяжная станция с загрузочным бункером; 6 – мобильный кормораздатчик; 7 – конечный выключатель; 8 – упор; 9 – ограждение.

Технологический процесс. При загрузке бункера с помощью мобильного кормораздатчика корм лентой разносится по кормовому желобу. При движении рабочего органа в обратном направлении остатки корма сбрасываются в приямок, расположенный за загрузочным бункером, через открытую дверь бункера (рис. 29).

Рис. 29. Схема расположения цепи тяговой и ленты тракторной:

а – окончание раздачи корма животным; б – окончание очистки кормового желоба от остатков корма.

Регулировки. Цепь натянута полностью тогда, когда нерабочая часть касается настила на расстоянии 4...5 м от оси натяжного барабана. Натяжение рабочего органа регулируют до тех пор, пока нижняя ветвь не будет касаться настила на расстоянии 4...5 м от оси натяжного барабана.

Подготовка к работе. При подготовке к работе проверяют крепления сборочных единиц и деталей, натяжение рабочего органа, соосность натяжной станции; убеждаются в наличии заземления.

Пуск и остановку транспортера-раздатчика осуществляют вручную кнопочными постами управления, расположенными со стороны привода и натяжной станции. В крайних положениях транспортер-раздатчик останавли­вают конечными выключателями.

После пуска в работу следят за натяжением цепи рабочего органа и по мере необходимости цепи натягивают. При загрузке бункера вручную для уменьшения скорости движения рабочего органа необходимо поменять местами звездочки.

Техническое обслуживание (ежедневное и периодическое). Ежедневное техническое обслуживание проводят один раз в день перед началом работы. Сюда входят: внешний осмотр, проверка надежности крепления резьбо­вых соединений и при необходимости их подтягивание, проверка смещения ленты на натяжном барабане и при необходимости выравнивание ее положения натяжными болтами.

Периодическое техническое обслуживание проводят через 100...150 ч работы транспортера-раздатчика. Выполняют все операции ежедневного технического обслуживания и дополнительные операции. Снимают приводную цепь, очищают от грязи и промывают в керосине с последующей проваркой в масле в течение 20 мин. Проверяют износ зубьев звездочек цепных передач, резьбовые крепления корпусов и крышек подшипников натяжного барабана, уровень масла в мотор-редукторе приводной станции и производят его замену. Смазывают детали согласно схемам и таблицам смазки. Проверяют сопротивление заземляющего контура.

Page 7

Цель работы. Изучение устройства и работы смесителя-запарника кормов С-12А, частичная разборка-сборка, регулировки, подготовка к работе, выполнение операций технического обслуживания и оценка его технического состояния.

Оборудование, инструмент и наглядные пособия. Смеситель-запарник кормов С-12А, набор слесарного инструмента, плакаты, учебные пособия, инструкционно-технологическая карта.

Содержание работы.

1. Изучить устройство и работу смесителя-запарника кормов С-12А и его основных сборочных единиц.

2. Провести частичную разборку-сборку смесителя-запарника.

3. Включить смеситель-запарник в работу и после его остановки выполнить операции технического обслуживания.

4. Составить и едать отчет о проделанной работе.

Методические указания к работе. Смеситель С-12А (рис. 15) предназначен для приготовления кормовых смесей влажностью 65–80% как с запариванием, так и без запаривания. Конструкция машины позволяет обогащать кормовые смеси мелассой, карбамидными растворами и жидкими кормовыми дрожжами.

Смеситель может с успехом применяться на свиноводческих фермах и фермах крупного рогатого скота, может входить в состав поточных технологических линий кормоцехов и использоваться как самостоятельный агрегат.

Смеситель С-12А состоит из следующих узлов (рис. 16): корпуса 1, парораспределителя 2, лопастных мешалок 3. шнека выгрузного 4, горловины выгрузной с клиновой задвижкой, привода смесителя 8, системы управления 6, крышки смесителя 7.

Корпус. В корпусе смесителя размещены все механизмы и узлы.

В торцовых стенках корпуса предусмотрены по два горизонтальных отверстия для выхода и крепления концов валов лопастных мешалок, а в нижней части – отверстия для прохода выгрузного шнека.

Рис. 15. Запарник-смеситель кормов С-12А:

1 – система управления кранами парораспределителя, 2 – парораспределитель, 3 –выгрузной шнек, 4, 5 – лопастные валы, 6 – натяжное устройство ременной передачи, 7 – натяжное устройство цепной передачи, 8 – редуктор, 9 – зубчатые колеса, 10– система управления шнеком и задвижкой, 11 – щит, 12 – крышка смесителя

В верхней части корпуса приварена решетка из уголкового профиля с девятью секциями. В секции решетки укладывают девять деревянных щитов, образующих крышку смесителя 7. Между торцовыми стенками внутри корпуса (в верхней его части) вварены три трубы. В средней трубе проходит трос, с помощью которого включается или выключается шнек, две другие служат для подачи воды в смеситель.

Рама приводной станции сварена из швеллеров, к которым приварены плиты для крепления на них редуктора и электродвигателя.

Рис. 16. Общий вид смесителя С-12А:

1 – корпус, 2 – парораспределитель, 3 – лопастная мешалка, 4 – шнек выгрузной, 5 –горловина выгрузная с клиновой задвижкой, 6 – система управления, 7 –крышка смесителя, 8 – привод смесителя

Парораспределитель. Коллектор 1 парораспределителя (рис. 17) питает паром две распределительные трубы 2, идущие снаружи вдоль обеих боковых стенок корпуса смесителя. Распределительные трубы закреплены в отверстиях торцовых стенок. Каждая распределительная труба пятью муфтовыми кранами 4 соединяется с пароподводящими патрубками 3. Одним концом патрубки вварены в днище корпуса смесителя; второй их конец имеет заглушку 5, снимаемую только при очистке системы. На квадратную часть хвостовика пробки муфтового крана крепится рычаг 7, шарнирно соединяющийся со штангой 6, которая объединяет в одну регулируемую систему все муфтовые краны одной стороны.

Рис. 17. Парораспределитель смесителя С-12А:

1 – коллектор, 2 – распределительная труба, 3 – пароподводящий патрубок, 4 – муфтовый кран, 5 – заглушка, 6 – штанга, 7 – рычаг

Такое устройство позволяет одновременно включать или выключать подачу в смеситель.

Коллектор присоединяется к общей системе паропровода патрубком с фланцем, вваренным в коллектор.

Лопастные мешалки предназначены для перемешивания кормов и получения однородной массы.

Лопастная мешалка 3 (см. рис. 16) состоит из двух валов (правого и левого) с восемью лопастями и двух подшипниковых блоков для каждого вала. Подшипники закрепляются на торцовых стенках смесителя. При работе смесителя лопасти правого вала (если смотреть со стороны привода) перемешивают и направляют корм в сторону приводной станции; лопасти левого вала – в сторону выгрузной горловины, т.е. правый вал с лопастями вращается по часовой стрелке, а левый – против часовой стрелки. Благодаря этому обеспечивается качественное перемешивание корма.

Правый и левый валы имеют одинаковую конструкцию. Они представляют собой трубы, к концам которых привариваются цапфы. Одна из цапф является опорной и на нее запрессовывается шарикоподшипник, входящий в посадочное место корпуса. На хвостовую часть цапфы при помощи двойного шпоночного соединения устанавливается шестерня. Правый вал получает вращение от шестерни левого вала, которому передается крутящий момент от шестерни редуктора привода. Шестерни правого и левого валов имеют одинаковый диаметр и число зубьев, что обеспечивает одинаковое число оборотов обоих валов.

Лопасть состоит из сницы и пера, сваренных из листовой стали. Основанием лопасти является согнутый из листа угольник, к которому привариваются четыре накладки. Установленная на посадочное место лопасть закрепляется на валу двумя стремянками и гайками, для которых предназначены накладки.

Шнек выгрузной. В нижней части смесителя расположен шнек, подающий перемешанную массу к выгрузному патрубку.

Шнек выгрузной 4 состоит из трубчатого вала с приваренными к нему витками диаметром 300 мм и шагом 240 мм, шлицевого приводного вала, шарикоподшипниковой опоры, приводной звездочки и кулачковой полумуфты. Трубчатый вал с одной стороны заглушен, ко второму концу приварен фланец, к которому крепится болтами фланец шлицевого приводного вала. Приводной вал вращается в шарикоподшипниковой опоре, фланец которой прикреплен к корпусу смесителя. Водонепроницаемость смесителя в месте прохождения вала через фланец опоры обеспечивается набивным уплотнением.

Выгрузная горловина с клиновой задвижкой предназначена для приема подаваемой шнеком готовой смеси и выдачи ее на транспортер или в тару. Горловина состоит из литого чугунного корпуса с фланцем и двух накладных пластин, которые являются направляющими для клиновой задвижки.

Накладные пластины крепятся болтами к боковым ребрам горловины, выполненным в виде клина.

Клиновая задвижка представляет собой чугунную отливку. Боковые стенки задвижки выполнены в виде клина. Угол, образуемый стенками, соответствует углу наклона накладных пластин горловины. Опускаясь, задвижка заклинивается и, прижимаясь к выгрузному окну горловины, закрывает ее.

Привод смесителя. Лопастная мешалка и выгрузной шнек работают от одного привода, состоящего из электродвигателя (мощностью 14 кВт при 1460 об/мин) и серийного цилиндрического редуктора ЦДН 50-П-36. На валу электродвигателя на шпонке установлен четырехручьевой шкив, который приводит во вращение быстроходный вал редуктора.

На выходном валу редуктора 1 (рис. 18) закреплена ведущая шестерня 2, вращающая зубчатое колесо левого вала мешалки 5, которое в свою очередь входит в зацепление с зубчатым колесом правого вала. Таким образом, оба вала вращаются с одинаковой скоростью.

Прогиб выходного вала редуктора может нарушить нормальное зацепление ведущей шестерни и зубчатого колеса левого вала мешалки. Для предотвращения этого служит дополнительная опора выходного вала в виде подшипника 4. Корпус подшипника закреплен на специальном кронштейне, приваренном к корпусу смесителя.

На ступице ведущей шестерни закреплена звездочка 3, которая при помощи роликовой цепи вращает звездочку на валу шнека.

Рис. 18. Привод смесителя С-12А:

1 – редуктор, 2 – шестерня ведущая, 3 – звездочка привода шнека, 4 – подшипниковый блок, 5 – шестерня мешалки

Пользуясь системой управления и перемещая, шлицевую кулачковую полумуфту можно приводить во вращение или останавливать выгрузной шнек. Выгрузной шнек следует включать только при поднятой клиновой задвижке выгрузной горловины, т.е. при обеспечении свободного выхода готовой массы из смесителя.

Система управления смесителя С-12А состоит из системы управления выгрузным шнеком и системы управления выгрузным устройством (рис. 19).

Рис. 19. Схема системы управления смесителя С-12А:

1 – рычаг управления шнека, 2– обводной валик, 3 – трос, 4 – вилка включения, 5 – механизм включения, 6 – задвижка клиновая, 7 – тяга, 8 – рычаг выгрузного шнека

Система управления выгрузным шнеком предназначена для включения или выключения выгрузного шнека и состоит из рычага управления 1, трех обводных валиков 2, рычажной вилки включения 4 и троса 3. Рычаг управления расположен на передней стенке смесителя и свободно вращается на оси, которая неподвижно закреплена в консольных опорах, прикрепленных к корпусу смесителя болтами.

Обводные ролики с направляющими канавками для троса также свободно вращаются на пальцах кронштейнов, укрепленных на корпусе. Вилка включения двумя пальцами шарнирно соединена со шлицевой кулачковой полумуфтой, находящейся на приводном валу шнека. Вторым концом вилка шарнирно связана с опорой.

Вилка включения перемещается при помощи троса, который одним концом прикреплен к рычагу вилки, а вторым через обводные ролики – с рычагом управления. В верхней части смесителя трос проходит в защитной трубе.

При включении шнека необходимо переместить рычаг управления вниз; трос при этом опустится, освобождая пружину кулачковой полумуфты, которая своим усилием вводит в зацепление кулачки обеих полумуфт. При выключении шнека рычаг управления переводится в верхнее положение; натяжением троса через рычажную вилку кулачковое соединение размыкается.

Зазор между вершинами кулачков полумуфт в выключенном положении должен быть равным 48 мм. Этот зазор регулируется упорным винтом, установленным на опоре рычажной вилки над малой консолью рычага вилки. К этой же консоли прикреплена поддерживающая пружина.

Система управления выгрузным устройством предназначена для подъема клиновой задвижки выгрузной горловины при разгрузке смесителя и опускания ее для перекрытия выходного отверстия по окончании разгрузки. Эта система состоит из рычага 8, свободно вращающегося на той же оси, на которой установлен рычаг управления системы выгрузного шнека, и шарнирно связанных друг с другом тяг 7, соединяющих рычаг с клиновой задвижкой 6 выгрузной горловины.

Задвижка открывает выходное отверстие выгрузной горловины, когда рычаг переводится в нижнее положение, так же как и рычаг управления, выгрузным шнеком.

При разгрузке смесителя необходимо в первую очередь открыть выгрузную горловину, а затем включить в работу выгрузной шнек. В противном случае может поломаться выгрузная горловина или узлы выгрузного шнека. Для предотвращения этого оба рычага управления сблокированы. На каждом рычаге приварены упоры из уголков, причем уголок рычага управления шнека упирается в уголок рычага выгрузного устройства, так что, не опустив рычаг выгрузного устройства, невозможно включить шнек.

Крышка смесителя. Смеситель закрывается сверху съемными деревянными щитами с рукоятками. Один и; щитов – откидной, связанный с решеткой корпуса петлями. Это позволяет периодически контролировать процесс приготовления корма. Во избежание несчастных случаев проем под откидным щитом перекрыт предохранительной решеткой.

В среднем щите левого ряда имеется загрузочный люк, перекрываемый шиберным устройством. Рама шиберного устройства выполнена из гнутого профиля в виде швеллера и закреплена на щите болтами. На верхних полках рамы предусмотрены отверстия для крепления загрузочных устройств. Сам люк перекрывается шибером с тягой, перемещение которого ограничивается фиксаторами.

Технологический процесс.Компоненты загружаются в загрузочную горловину крышки смесителя. При заполнении одной трети емкости смесителя включают в работу мешалки и продолжают загрузку. Коэффициент наполнения емкости смесителя не должен превышать 0,6–0,7 для кормовых смесей с включением соломы и силоса и 0,8 для полужидких кормов.

Для периодического контроля за процессом приготовления смеси необходимо пользоваться смотровым люком в крышке смесителя.

Готовую кормовую смесь выгружают в кормораздатчики или другие транспортные средства, открыв выгрузную горловину, а затем включив в работу шнек.

Запариванию подлежат корма, которые по физико-механическим свойствам и вкусовым качествам нуждаются в такой обработке. Грубые корма перед запариванием обязательно измельчают (длина частиц не должна превышать 50 мм). Перед загрузкой сечку смачивают водой (80–100 л на 1 ц сечки).

Первоначально в смеситель загружают только те корма, которые подлежат запариванию.

Процесс запаривания длится 60–75 мин при работающих мешалках. По истечении времени запаривания в смеситель добавляют остальные компоненты, и все тщательно перемешивается. Такая последовательность загрузки позволяет уменьшить расход пара, понизить до допустимых пределов температуру готовой кормовой смеси и повысить производительность машины.

При приготовлении кормовых смесей без запаривания все компоненты, входящие в. смесь, можно подавать одновременно.

Перемешивание продолжается 10 мин. При обогащении кормов карбамидными и другими растворами – 15 мин.

После окончания рабочей смены смеситель и парораспределитель необходимо очищать от остатков корма и промывать водой.

Эксплуатация машины. Смеситель С-12А поступает в хозяйство в собранном виде, за исключением рычагов управления с их кронштейнами, обводных роликов и штанг муфтовых кранов парораспределителя, которые укладываются в смеситель во избежание поломок и повреждений во время транспортировки.

Машину устанавливают на место в следующем порядке:

1) смеситель устанавливают на направляющие балки, уложенные напротив монтажного проема, причем одна направляющая должна находиться под рамой привода, а вторая – под опорной полосой передней стенки бункера-смесителя;

2) к средней части передней и задней стенок корпуса смесителя привариваются монтажные скобы. К последним крепится соединительный трос, а к нему – трос лебедки;

3) перемещают смеситель до конца балок при помощи лебедок. Смеситель перемещается с особой осторожностью во избежание перекоса и схода его с направляющих балок;

4) далее смеситель перемещают к месту его окончательной установки на катках, которые подводятся под опоры смесителя.

Подготовка машины к работе заключается в следующем. Устанавливают кронштейны вместе с рычагами системы управления и натяжных роликов. Прикрепляют один конец троса к рычагу вилки. Натягивают трос при помощи гайки натяжного устройства. Очищают машину от пыли и грязи. Осматривают смеситель и устраняют неисправности. Проверяют зазор между вершинами кулачков полумуфт, который должен быть равным 48 мм; при необходимости его регулируют при помощи упорного винта. Проверяют наличие смазки в редукторе; натя­жение приводной цепи выгрузного шнека и ремней; легкость хода обводных роликов; надежность всех болтовых креплений, особенно крепления лопастей мешалок. Под­ключают парораспределитель к общей системе пароснабжения и проверяют работу парораспределения каж­дого муфтового крана отдельно. Присоединяют штанги к муфтовым кранам и проверяют парораспределение каждой стороны отдельно. Подключают водяные трубы к общей водопроводной системе и проверяют их действие. Подключают электродвигатель к электросети. Обкатывают машину на холостом ходу, с целью проверки взаимодействия всех механизмов. После этого обкатывают машину под рабочей нагрузкой, проверяя ход рабочего процесса при приготовлении кормов, как с запариванием, так и без него.

Техническое обслуживание. Для обеспечения сохранности и безаварийной работы смесителя С-12А необходимо проводить своевременный уход, заключающийся в периодическом осмотре всех узлов, регулировке механизмов и смазке.

Ежедневный технический уход следует проводить сразу после окончания работы. При этом необходимо провести следующие операции:

1) тщательно очистить и промыть корпус и выгрузной шнек. Промывку рекомендуется вести при работающих мешалках, а затем и при работающем выгрузном шнеке; при этом все щиты крышки должны быть закрыты;

2) проверить натяжение клиновых ремней и при необходимости натянуть их;

3) проверить надежность заземления электродвигателя;

4) выявить, почему протекает смазка, и устранить течь;

5) выявить причины течи воды или массы в подшипниковых узлах или клиновой задвижке и устранить их;

6) проверить и протереть кулачки муфты включения и шлицевой вал шнека;

7) проверить натяжение троса; если трос ослаблен, подтянуть его при помощи натяжного устройства и проверить работу кулачковой муфты, проведя 5–6 контрольных включений;

8) для обеспечения свободного перемещения клиновой задвижки и плотного прилегания ее необходимо прочищать паз. При этом для удобства рекомендуется снимать накладные пластины.

Технический уход № 1 проводится один раз в 10 дней; при этом выполняются все операции ежедневного технического ухода и дополнительно проверяется состояние уплотнения подшипниковых узлов (при необходимости подтянуть их или заменить), редуктора и натяжных устройств; состояние мешалок и их креплений на валу; смазка всех шестерен и цепной передачи солидолом (наличие грязи и ржавчины на этих деталях не допускается); зазор между кулачками при разомкнутом положе­нии полумуфт.

Технический уход № 2 проводится один раз в 6 месяцев; при этом выполняются все операции технического ухода № 1 и дополнительно необходимо промыть приводную цепь выгрузного шнека керосином с последующей ее смазкой; промыть редуктор привода дизельным топливом или керосином, осмотреть состояние зубьев шестерен, заполнить редуктор свежим маслом до уровня отметки.

Техническая характеристика

Тип машины стационарный
Объем, м3
Коэффициент наполнения:  
полужидкими кормами 0,8
кормовыми смесями с применением грубых кормов 0,6…0,7
Лопасти мешалок, мм:  
диаметр
шаг
Скорость вращения, об/мин 3,7
Выгрузной шнек:  
диаметр, мм
шаг витков, мм
скорость вращения, об /мин
Вес, кг
Габариты, мм:  
длина
ширина
высота
Расход пара при давлении 0,26…0,30 ат, кг 250–300
Продолжительность запаривания, ч 1…1,25
Продолжительность перемешивания (при приготовлении смеси без запаривания), мин 10…15

Отчет о работе.

1. Вычертить принципиальную технологическую схему смесителя-запарника кормов С-12А.

2. Привести основные технические данные смесителя-запарника и технологические регулировки.

3. Дать оценку техническому состоянию смесителя-запарника.

Контрольные вопросы и задания.

1. Объясните принцип действия и технологический процесс смесителя-запарника С-12А.

2. Назовите основные сборочные единицы смесителя-запарника и объясните их устройство.

3. Расскажите о порядке подготовки смесителя-запарника к работе.

4. Перечислите основные операции ежедневного обслуживании смесителя-запарника.

Работа 7

Page 8

Цель работы. Изучение устройства и работы агрегата для приготовления заменителя молока АЗМ-0,8А, частичная разборка-сборка, регулировки, подготовка к работе, выполнение операций технического обслуживания и оценка его технического состояния.

Оборудование, инструмент и наглядные пособия. Агрегат для приготовления заменителя молока АЗМ-0,8А, набор слесарного инструмента, плакаты, учебные пособия, инструкционно-технологическая карта.

Содержание работы.

5. Изучить устройство и работу агрегата для приготовления заменителя молока АЗМ-0,8А и его основных сборочных единиц.

6. Провести частичную разборку-сборку агрегата для приготовления заменителя молока.

7. Включить агрегат для приготовления заменителя молока в работу и после его остановки выполнить операции технического обслуживания.

8. Составить и едать отчет о проделанной работе.

Методические указания к работе. Агрегат АЗМ-0,8А предназначен для приготовления заменителя молока телятам и рассчитан на обслуживание телятника на 200...300 голов.

Агрегат может быть использован для приготовления различных высокодисперсных пищевых эмульсий и как нагреватель воды для технических нужд.

Приготовленный в агрегате высококачественный заменитель молока дает возможность высвободить большое количество цельного молока. Простота обслуживания; низкие энергоемкость и трудоемкость, стерильность продукта – все это способствует значительному экономическому эффекту при использовании агрегата АЗМ-0,8А в хозяйствах. Агрегат может работать с установкой для выпойки телят УВТ-20 или с любыми другими средствами предназначенными для выпойки молодняка сельскохозяйственных животных.

Агрегат для приготовления заменителя молока АЗМ-0,8А (рис. 20) состоит из смесителя 6, шнека 7, установки насоса эмульсатора 15, фильтра 18, бачка 9, трубопроводов и соединительной арматуры для заменителя молока, трубопроводов и соединительной арматуры для воды и пара, электрооборудования.

Смеситель 6 состоит из двух цилиндрических обечаек – наружной и внутренней; воздушная рубашка между ними служит термоизолятором во время запаривания. При охлаждении содержащегося в смесителе продукта через рубашку проходит холодная вода. Внутри емкости смесителя установлена мешалка 3, верхний конец которой соединен с валом редуктора. Вращение мешалки осуществляется от привода, смонтированного на раме. На внутренней поверхности смесителя при помощи кронштейнов 33 закреплены две неподвижные лопасти 4. Смеситель закрывается двумя крышками. Первая крышка предназначена для наблюдения за процессом приготовления заменителя молока, закреплена шарнирно и фиксируется в открытом положении специальным устройством. На второй крышке размещены корпус подшипника для крепления вала мешалки, рама для крепления привода мешалки и приемная горловина для загрузки шнеком растительных компонентов комбикорма. Загрузочная горловина после окончания загрузки закрывается заслонкой. На наружной обечайке смесителя установлены термометр 12 и указатель уровня 11. В нижней части смесителя приварена рама для крепления насоса-эмульсатора и шнека.

Рис. 20. Агрегат для приготовления заменителя молока АЗМ-0,8А:

1 – бункер загрузочный; 2 – вентиль слива воды из водяной рубашки; 3 – мешалка лопастная; 4 – мешалка неподвижная; 5 – кожух; 6 – сменеситель-запарник; 7 – течка; 8 – труба для отвода избыточных паров; 9 – бачок для жиров; 10 – труба; 11 – указатель уровня; 12 – термометр; 13 – вентиль; 14 – кран; 15 – насос-эмульсатор; 16 – рукав выдачи; 17 – кран трехходовой; 18 – фильтр; 19 – вентиль; 20 – кран трехходовой; 21 – клапан обратный; 22 – рукав для обрата; 23 – шнек; 24 – вентиль; 25 – мешалка.

Привод, предназначенный для передачи крутящего момента мешалке, устанавливается вертикально в верхней части смесителя и состоит из электродвигателя и редуктора. Редуктор представляет собой трехосную двухступенчатую цилиндрическую передачу. В корпусе и крышке редуктора имеются отверстия для заливки и слива масла, закрываемые резьбовой пробкой и сапуном, в котором имеется отверстие для сообщения внутренней полости редуктора с атмосферой. Уровень масла в редукторе определяется посредством контрольного отверстия, закрытого резьбовой пробкой.

Загрузочное устройство предназначен для загрузки в смеситель комбикормов и состоит из загрузочного бункера 1, мешалки 25, расположенной в бункере, кожуха шнека 5 и шнека 23 (рис. 20). Внутри бункера установлена сетка, предотвращающая попадание в бункер инородных предметов. Шнек установлен вертикально. Привод шнека осуществляется от электродвигателя через клиноременную передачу. Привод мешалки осуществляется от вала шнека через одноступенчатую цилиндрическую зубчатую передачу. На кожухе шнека имеется крышка, открыв которую можно очистить кожух от комбикорма. Для регулирования подачи корма из бункера служит заслонка.

Установка насоса-эмульсатора 15 (рис. 20) предназначена для эмульсирования смеси, подачи обрата в смеситель, перекачивания, выдачи готового продукта и для циркуляционной промывки составных частей агрегата;

Установка насоса-эмульсатора состоит из рамы насоса-эмульсатора, электродвигателя, соединительной муфты, щитка и соединительного патрубка.

Насос-эмульсатор состоит из корпуса, вала, крыльчатки, диска неподвижного, диска подвижного, пальцев и рассекателей. Корпус эмульсатора и крышка эмульсатора образуют полость, разделенную неподвижным диском на камеры. В первой камере вращается крыльчатка, создающая напор, необходимый для проталкивания смеси нерабочую камеру. На одном диске укреплены рассекатели, на другом – пальцы. Подвергаясь интенсивным ударам и перемешиванию, первичная эмульсия дробится на мельчайшие частицы. Вторичная тонкодисперсная эмульсия выходит через отверстие в крышке по трубопроводу. Подвижный диск и крыльчатка посажены на шлицевый вал и крепятся на нем гайкой. Выходной конец вала установлен в корпусе на конических подшипниках, которые с наружной стороны закрываются крышками с прокладками. Уплотнение вала осуществляется резиновыми манжетами.

Фильтр 18 (рис. 20) предназначен для предотвращения попадания в насос-эмульсатор и трубопроводы инородных тел. Фильтр состоит из корпуса, фильтрующего элемента, крышки, которая крепится к корпусу при помощи скобы. Уплотнение корпуса и крышки осуществляется прокладкой. Фильтр крепится к насосу-эмульсатору и трубопроводам при помощи гаек.

Бачок 9 (рис. 20) предназначен для заливки в него смеси растительных и животных жиров, биостимуляторов (микроэлементов и антибиотиков). Бачок при помощи кронштейнов крепится к смесителю. Патрубок в нижней части бачка служит для соединения с всасывающей полостью насоса-эмульсатора посредством трубопровода, на котором установлен кран, регулирующий, подачу смеси из бачка.

Трубопроводы и соединительная арматура предназначены для соединения составных частей агрегата в единую технологическую линию, по которой циркулирует заменитель молока, и состоят из трехходовых кранов, гаек, конусов, штуцеров, колен, разводки и рукава. Трубопроводы и соединительная арматура для воды и пара предназначены для подключения агрегата к водопроводной и паропроводной системам и состоят из тройников, сгонов, муфт, труб, вентилей, контргаек и угольников. Обратный клапан служит для предотвращения забивания паропроводящей системы кормовой смесью в случае падения давления пара, подаваемого в смеситель. Состоит из корпуса, прокладки, золотника и крышки. Обратный клапан должен быть установлен так, чтобы золотник при прохождении пара срабатывал в вертикальной плоскости. Стрелка на корпусе указывает направление подачи пара.

Электрооборудование агрегата АЗМ-0,8А подключается к сети переменного тока напряжением 380/220 В. В состав электрооборудования агрегата входят шкаф управления, электродвигатель насоса-эмульсатора мощностью 4 кВт, электродвигатель мешалки мощностью 1,1 кВт, электродвигатель шнека мощностью 0,55 кВт. Шкаф управления сварной конструкции, пылевлагозащищенного исполнения, устанавливается на стене внутри помещения на расстоянии 1,5–2 м от агрегата. На боковой стенке шкафа управления установлены пакетный выключатель ПВМЗ-25, предназначенный для подачи и отключения питания, посты управления ПКЕ 122-2 и ПКЕ 122-3, предназначенные для пуска и остановки механизмов агрегата. Внутри шкафа управления на панели установлены: автоматические выключатели АП50-ЗМ для защиты электродвигателей от токов короткого замыкания; магнитные пускатели ПМЕ-112 и ПМЕ-114 для пуска и защиты электродвигателей от перегрузок; предохранитель ШРС-6-Н для защиты цепей управления от токов короткого замыкания; набор зажимов малогабаритный КМ-1-10-12.

Технологический процесс (рис. 21). Агрегат для приготовления заменителя молока АЗМ-0,8А смешивает комбикормовые смеси с водой, запаривает полученную смесь, осолаживает ее, смешивает смесь с обратом, растительными и животными жирами, биостимуляторами (микроэлементами, витаминами и антибиотиками), эмульсирует грубодисперсную смесь и выдает готовый продукт.

Заменитель молока готовят по установленной рецептуре из расчета на одно кормление телят. Рецептура кормовых компонентов заменителей молока, может быть разнообразной, в зависимости от наличия компонентов кормов в хозяйстве. Однако подбор компонентов должен отвечать требованиям, предъявленным к заменителям молока: В состав заменителя молока входят сухие кормовые смеси, снятое молоко (обрат), биостимуляторы (микроэлементы, витамины, антибиотики), сахар, соль, мел, рыбий жир другие.

Сухие комбинированные смеси (рис. 21) из загрузочного бункера 6 направляются шнеком 7 в смеситель-запарник 9. Снятое молоко (обрат) закачивается в смеситель-запарник насосом-эмульсатором 14 при помощи гибкого рукава. Вода подводится в нижнюю часть смесителя из водопроводной сети. Смесь нагревают паром, подводимым нижнюю часть смесителя. Эмульсирование, выдача готового продукта и циркуляционная промывка трубопроводов для заменителя молока производятся насосом-эмульсатором, имеющим индивидуальный привод от электродвигателя. Смесь растительных и животных жиров, биостимуляторов микроэлементов и антибиотиков) и других компонентов, предусмотренных рецептом заменителя молока, заливается в бачок 10 и подается в смеситель 9 через фильтр 17.

Рис. 21. Принципиально-технологическая схема агрегата

для приготовления заменителя молока АЗМ-0,8А:

1 – воронка; 2, 11 – трубопроводы; 3, 4, 13, 15, 18, 19, 20 – вентили; 5 – загрузочный ковш; 6 – бункер; 7 – шнек; 8 – указатель уровня; 9 – запарник-смеситель; 10 – бачок; 12 – термометр; 14 – насос-эмульсатор; 16 – выпускной шланг; 17 – фильтр; 21 – мешалка

Подготовка агрегата к работе. Открывают вентиль и заполняют емкость смесителя холодной водой в количестве 400 л, после чего вентиль закрывают. Количество залитой в смеситель воды определяют по указателю уровня.

Запускают электродвигатель мешалки, открывают заслонку, нажатием кнопки запускают электродвигатель загрузочного шнека и постепенно засыпают комбикорм в бункер. Из бункера комбикорм шнеком подается в смеситель. После окончания загрузки комбикормов в смеситель отключают электродвигатель привода шнека, закрывают заслонку. При этом мешалка остается включенной. При вращении мешалки происходит смешивание комбикормов с водой и образование равномерной по консистенции смеси. Для подогрева смеси открывают вентиль, пар поступает в смеситель и нагревает смесь до температуры 85...90 °С. Контроль за температурой нагрева смеси ведут по термометру 12. После окончания подогрева смеси закрывают вентиль, прекращают подачу пара в смеситель. Следующий процесс обработки – осолаживание (пропаривание) растительных компонентов комбикормов – начинается при достижении смесью температуры 70 °С и продолжается при дальнейшем ее нагревании до 85...90 °С. Осолаживание длится не менее 1 ч после достижения смесью температуры 90 °С.

Во время осолаживания каждые 10...15 мин нажатием кнопки включают электродвигатель привода мешалки в работу на 4...5 мин. После окончания процесса осолаживания заливают в смеситель обрат (снятое молоко). При наличии в хозяйстве свежего, качественного, непастеризованного обрата кормовую смесь после осолаживания сразу охлаждают холодной водой, открыв вентиль 13 (рис. 20). Обрат в смеситель закачивают насосом-эмульсатором 15 в такой последовательности: рукав 22 (рис. 20) опускают в емкость с обратом; трехходовые краны 20 и 17 устанавливают в положение «смеситель – насос-эмульсатор – смеситель»; нажимают кнопку и запускают электродвигатель насоса-эмульсатора. Агрегат при этом работает по замкнутому циклу. При достижении насосом-эмульсатором полной производительности (контролируют по истечению смеси из патрубка внутри емкости) трехходовой кран 20 (рис. 20) переключают в положение «емкость для обрата – насос-эмульсатор». Насос-эмульсатор начинает подавать обрат, агрегат работает по циклу «емкость для обрата – насос-эмульсатор – смеситель». Таким образом подают в смеситель обрат в количестве, соответствующем установленной рецептуре. Контроль ведут по указателю уровня 11. После окончания заливки обрата нажимают кнопку и выключают электродвигатель насоса-эмульсатора. После этого охлаждают кормовую смесь до температуры 50...55 °С. Для этого открывают вентиль 19 (рис. 21) и направляют холодную воду в рубашку смесителя. Остальные вентили оставляют закрытыми. При охлаждении смеси до температуры 50...55 °С вентиль 18 закрывают.

Во вспомогательной емкости (ведре) приготовляют в соответствии с рецептом смесь растительных и животных жиров, витаминов, микроэлементов и антибиотиков на подогретом обрате или кипяченой воде и заливают в бачок 9. Для подачи смеси из бачка 9 в смесителе устанавливают трехходовые краны 20 и 17 в положение «смеситель – эмульсатор – смеситель», кран 18 (рис. 20) устанавливают в положение «для выдачи» и, нажав кнопку, включают электродвигатель насоса-эмульсатора. При этом агрегат будет работать по замкнутому циклу («смеситель – эмульсатор – смеситель»). Смесь из емкости будет засасываться насосом-эмульсатором и подаваться обратно в емкость с одновременным засасыванием смеси из бачка. Одновременно с подачей жировой смеси в смеситель производится эмульсирование смеси, т.е. дробление жировой смеси на мелкие частицы и равномерное распределение их по всему объему продукта. Эмульсирование должно длиться 15...20 мин до полного выхода жировой смеси из бачка. После окончания эмульсирования нажатием кнопки выключают электродвигатель насоса-эмульсатора, закрывают кран 14 (рис. 20), затем, не выключая электродвигатель мешалки, открывают вентиль впуска холодной воды в рубашку и охлаждают смесь до температуры 35–38 °С. После охлаждения нажимают на кнопку и выключают электродвигатель мешалки.

Выдачу готового продукта при ручной выпойке производят через гибкий рукав во фляги или другие емкости. При механизированной выпойке гибкий рукав подключают к трубопроводу для забора продукта. Для выдачи готового продукта устанавливают трехходовой кран 17 в положение «эмульсатор – выдача», а трехходовой кран 20 – в положение «смеситель – эмульсатор» и, нажав на кнопки, включают электродвигатели мешалки и насоса-эмульсатора. Приготовленный заменитель молока выдается по потребности. После окончания выдачи готового продукта, нажав на кнопки, выключают электродвигатели приводов мешалки и насоса-эмульсатора, тщательно промывают агрегат. Для этого открывают вентили 13 и 19 (рис. 20) и заполняют смеситель холодной водой. После заполнения смесителя водой закрывают вентили 13 и 19 и спускают воду из рубашки смесителя. Затем открывают паровой вентиль 24 и подогревают воду в смесителе до температуры 70 °С. Температуру нагрева воды контролируют термометром 12.

Агрегат промывают по двум циклам: 1-й цикл – трехходовые краны 17 и 20 устанавливают в положение для перекачивания воды из смесителя в эмульсатор и снова в смеситель и, нажав кнопку, запускают электродвигатель насоса-эмульсатора. Продолжают промывку таким образом в течение трех минут. При этом промываются трубопроводная арматура, смеситель, фильтр, насос-эмульсатор; 2-й цикл – устанавливают трехходовые краны 17 и 20 в положение для выдачи продукта и сливают воду в канализацию. После промывки агрегата промывают бачок 9 (рис. 20), снимают крышку фильтра, извлекают сетку; промывают, после чего фильтр собирают.

После этого заливают в смеситель горячий щелочной раствор и промывают им агрегат по двум циклам, изложенным выше, затем сливают раствор и окончательно промывают агрегат горячей водой. При механизированной промывке агрегата АЗМ-0,8А используется насос-эмульсатор и емкость смесителя. Для этого в емкость смесителя заливают щелочной раствор в количестве 600 л и подогревают его паром до температуры 70 °С. Для подачи пара в емкость смесителя необходимо закрыть вентиль 19 (рис. 20) и трехходовой кран 20, вентиль 24 – открыть. Верхнюю часть внутренней поверхности смесителя промывают специальной щеткой, прикладываемой к агрегату. Возможна механизированная промывка верхней части внутренней поверхности смесителя. Для этого щетку присоединяют посредством переходного элемента к рукаву 16 (рис. 20). При перекачивании обеспечивают одновременную подачу жидкости в колено 10 и рукав со щеткой установкой рукоятки крана 17 в нужное положение.

Техническое обслуживание (ежедневное и периодические технические обслуживания). При ежедневном техническом обслуживании (ЕТО) очищают наружные и внутренние поверхности агрегата от остатков корма; проверяют состояние затяжки резьбовых соединений, исправность заземления, убеждаются в отсутствии посторонних предметов на агрегате, наличии подтекания смазки через уплотнения, посторонних шумов и стуков при работе агрегата, смазки в редукторе привода мешалки.

При первом техническом обслуживании (ТО-1) через 60 ч работы выполняют все работы ежедневного технического обслуживания. Кроме этого, смазывают подшипники в соответствии со схемой смазки, проверяют натяжение ремней клиноременной передачи шнека, надежность крепления лопастей мешалки смесителя и шнека, крепления пальцев и рассекателей насоса-эмульсатора, крепления электроаппаратов, состояние контактов магнитных пускателей.

При втором техническом обслуживании через 240 ч работы выполняют все работы ежедневного и технического обслуживания ТО-1. Кроме этого, дополнительно проверяют состояние изоляции электродвигателей привода мешалки, шнека, насоса-эмульсатора, состояние подшипников электродвигателей привода мешалки, шнека, насоса-эмульсатора; заземление электродвигателей и агрегата, состояние покраски агрегата.

Page 9

Цель работы. Изучение устройства и работы кормораздатчика тракторного универсального КТУ-10А, частичная разборка-сборка, регулировки, подготовка к работе, выполнение операций технического обслуживания и оценка его технического состояния.

Оборудование, инструмент и наглядные пособия. Кормораздатчик тракторный универсальный КТУ-10А, набор слесарного инструмента, плакаты, учебные пособия, инструкционно-технологическая карта.

Содержание работы.

1. Изучить устройство и работу кормораздатчика тракторного универсального КТУ-10А и его основные сборочные единицы.

2. Провести частичную разборку-сборку кормораздатчика, подготовить его к работе.

3. Включить кормораздатчик в работу и после его остановки выполнить операции технического обслуживания.

4. Составить и сдать отчет о проделанной работе.

Методические указания к работе. Кормораздатчик тракторный универсальный КТУ-10А (рис. 22) служит для транспортировки и выгрузки на ходу в кормушки на одну или две стороны измельченных грубых и зеленых кормов, корнеклубнеплодов, жома и кормовых смесей. Его наиболее рационально использовать при откорме крупного рогатого скота на откормочных или выгульных площадках, летних лагерях и в типовых животноводческих помещениях с шириной кормового прохода не менее чем 2,1 м и высотой кормушек не более 0,75 м.

Кормораздатчик КТУ-10А представляет собой двухосный прицеп, агрегатируемый с тракторами типа «Беларусь». Основные сборочные единицы и механизмы: рама с ходовой частью, кузов с надставными бортами, подающий конвейер, раздающее устройство, центральный привод, редуктор, трансмиссия, тормозная система и электрооборудование.

Ходовая часть состоит из рамы сварной конструкции с прицепным устройством, передней и задней осей с рессорами и четырьмя пневматическими колесами. На задних колесах установлены колодочные тормоза с гидравлическим приводом, управление которыми осуществляется из кабины трактора. Кузов цельнометаллический, с шарнирно подвешенным задним бортом. Днище кузова выполнено в виде металлического каркаса и покрыто досками. По доскам скользят две пары втулочно-роликовых цепей с шагом 38 мм, к которым приклепаны штампованные поперечные металлические планки, образующие спаренный подающий конвейер. Приводной вал конвейеров находится в передней части кузова и вращается в четырех подшипниках скольжения, приводится во вращение от вала нижнего битера посредством храпового механизма.

Рис. 22. Кормораздатчик КТУ-10А:

I – днище кузова, 2 – задний борт, 3 – боковой борт, 4 – надставной борт, 5, 18 – ограждающие щитки, 6 – боковина, 7 – блок битеров, 8 – щит-отражатель, 9 – передний борт, 10 –выгрузной конвейер, 11 – привод раздатчика, 12 – тормозное устройство, 13 – телескопический вал, 14 – гидравлический механизм подъема дополнительного конвейера, 15 – ходовая часть, 16 – дополнительный конвейер, 17 – задний фонарь и указатель поворота

Раздающее устройство включает два битера, выгрузной и наклонный дополнительный (для выгрузки корма в высокие кормушки) конвейеры. Полотна конвейеров натянуты с помощью специальных винтовых устройств. Битеры вращаются в подшипниках скольжения, укрепленных на боковинах кузова. Выгрузной конвейер смонтирован на раме кормовыгрузного устройства в передней части кузова, он состоит из четырех валов, на которые натянуты два параллельных ленточных конвейера.

Рабочие органы кормораздатчика приводятся в действие от ВОМ трактора через телескопический вал, редуктор и ведущий вал.

Регулируют норму выдачи кормов и изменяют направление вращения подающего конвейера кривошипно-шатунным механизмом с храповым колесом (рис. 23а).

Скорость движения подающего конвейера зависит от числа зубьев храпового колеса, которые захватываются ведущими собачками 7 и 11 при одинарном движении шатуна 2. Число зубьев, захватываемых собачкой, а следовательно, и скорость конвейера регулируется путем перекрытия зубьев колеса 3 кожухом 8, который может фиксироваться устройством 9 в определенном положении.

Рис. 23. Механизм привода подающего конвейера кормораздатчика КТУ-10А

а – положение при движении конвейера вперед, б – положение при движении конвейера назад; 1 – кривошип, 2 – шатун, 3 – зубчатое колесо, 4 – щеки, 5 – палец, 6, 12 – пружины собачек, 7, 11 – собачка привода, В – кожух, 9 – устройство для фиксирования кожуха, 10 – фиксатор

Направление движения подающего конвейера в случае использования кормораздатчика в качестве прицепа и выгрузки кормов через откидной задний борт кузова изменяют, переставляя собачку, как показано на рис. 23б.

КТУ-10А работает следующим образом. Для раздачи кормов на обе стороны дополнительный конвейер демонтируют, снимая заслонку с левого окна выгрузного конвейера; устанавливают норму выдачи, после чего включают ВОМ трактора. В результате, перемещаясь вдоль кормового прохода, агрегат заполняет кормушки с обеих сторон. Если необходимо раздавать корм на одну сторону, снимают цепь привода левого полотна выгрузного конвейера.

Техническая характеристика кормораздатчика КТУ-10А

Грузоподъемность, кг
Вместимость кузова, м3
Производительность, м3/ч 80…480
Скорость, км/ч:  
рабочая 1,7...2,5
транспортная
Колея, мм
База колес, мм
Габариты, мм:  
длина
ширин
высота
Масса, кг
Обслуживающий персонал, чел.

Отчет о работе.

1. Вычертите принципиально-технологическую схему кормораздатчика КТУ-10А

2. Приведите основные технические данные кормораздатчика.

3. Опишите технологические регулировки кормораздатчика.

Контрольные вопросы и задания.

1. Из каких основных сборочных единиц, состоит кормораздатчик универсальный КТУ-10А?

2. По какой технологической схеме работает кормораздатчик?

3. Каков порядок подготовки кормораздатчика к работе?

4. Приведите основные правила безопасности труда.

5. Назовите основные операции технического обслуживания кормораздатчика.

6. Приведите основные правила безопасной работы.

Работа 9

Page 10

Цель работы. Изучение устройства и работы кормораздатчика универсального КУТ-3А, частичная разборка-сборка, регулировки, подготовка к работе, выполнение операций технического обслуживания и оценка его технического состояния.

Оборудование, инструмент и наглядные пособия. Кормораздатчик универсальный КУТ-3А, набор слесарного инструмента, плакаты, учебные пособия, инструкционно-технологическая карта.

Содержание работы.

1. Изучить устройство и работу кормораздатчика универсального КУТ-3А и его основные сборочные единицы.

2. Провести частичную разборку-сборку кормораздатчика, подготовить его к работе.

3. Включить кормораздатчик в работу и после его остановки выполнить операции технического обслуживания.

4. Составить и сдать отчет о проделанной работе.

Методические указания к работе. Кормораздатчик КУТ-3А (рис. 24) предназначен для перевозки и односторонней или двусторонней раздачи в кормушки сухих, концентрированных и полужидких кормов, измельченных корнеклубнеплодов, бахчевых, измельченной зеленой массы в смеси с другими компонентами, степень измельчения которых соответствует зоотехническим требованиям.

Рис. 24. Универсальный кормораздатчик КУТ-3А:

1 – карданная передача, 2 – редуктор, 3 – промежуточный вал, 4 – гидроцилиндр, 5 – раздающие устройства, 6 – ведущая звездочка, 7 – заслонка, 8 – скребковый конвейер, 9 – рычаг управления, 10 – натяжной вал, 11 – ходовые колеса, 12 – обводная звездочка, 13 – направляющая, 14 – рычаг включения шнека, 15 – рама, 16 – домкрат-подножка

Конструкция кормораздатчика позволяет использовать его в качестве смесителя кормов с последующей их перевозкой и раздачей. Загрузка бункера не должна превышать объема, заключенного между ветвями транспортера.

Кормораздатчик КУТ-3А (рис. 25) состоит из следующих основных узлов: бункера 12, скребкового транспортера 1, коробки выгрузной 15, ходовой части 17 и раздающего устройства (шнеки выгрузные 14 и лотки 16).

Бункер крепится к раме болтами. Рама цапфами опирается на два пневматических колеса, а в передней части – на подножку-домкрат, которым можно регулировать высоту расположения прицепной серьги 4.

В передней части рамы расположен механизм привода кормораздатчика, состоящий из шарнирной передачи, промежуточного вала с предохранительной муфтой, конического редуктора и приводных цепей.

Транспортер, служащий для смешивания кормов и последующей их выгрузки, расположен внутри бункера; он огибает звездочки в сборе 2 и направляющие в передней части бункера.

Движение транспортеру передается двумя приводными звездочками 6 от редуктора через цепную передачу. Цепь, кроме того, с левой стороны бункера приводит во вращение промежуточный вал, который передает вращение вы­грузным шнекам 14.

Для натяжения цепей транспортера, а также для поглощения ударов, возникающих при попадании твердых частиц корма между цепью транспортера и звездочками, служит натяжное устройство 10, расположенное в верхней части бункера.

Рис. 25. Технологическая схема кормораздатчика КУТ-3А:

1 – транспортер скребковый, 2 – звездочка в сборе, 3 – подножка-домкрат, 4 – прицепная серьга, 5 – заслонка, 6 – приводная звездочка, 7 – выгрузное

окно, 8 – эксплуатационно-загрузочный люк, 9 – натяжной вал, 10 – натяжное устройство, 11 – сливной люк, 12 – бункер, 13 – рычаг включения шнеков, 14 – шнеки выгрузные, 15 – коробка выгрузная, 16 – лотки, 17 – ходовая часть, 18 – кормушки

В правой боковине бункера расположен эксплуатационно-загрузочный люк 8, через который загружается корм. Кроме того, через люк можно проникнуть в бункер для его осмотра и ремонта.

Для механизированной загрузки корма в верхней части бункера имеется загрузочное окно. Сливной люк 11, расположенный в нижней задней части бункера, служит для слива воды и удаления остатков корма при проведении технического ухода за кормораздатчиком.

Выгрузные окна 7 перекрываются заслонками, расположенными в верхней части передней стенки бункера. Заслонки управляются при помощи рычагов. Выгрузная коробка крепится болтами к передней стенке бункера у выгрузного окна. К выгрузной коробке болтами крепится раздающее устройство. На кожухе последнего шарнирно устанавливаются лотки 16, по которым корм подается в кормушки.

Управление лотками осуществляется при помощи гидропривода от гидросистемы трактора.

Бункер 12 (см. рис. 25) – сварной, бескаркасный, изготовлен из листовой стали.

Передняя стенка бункера по отношению к днищу наклонена под углом 60°; в верхней ее части расположены выгрузные окна, перекрываемые при смешивании кормов качающимися заслонками.

Обе боковые стенки в задней части вверху имеют окна под натяжные устройства 10 и натяжной вал 9, а внизу – отверстия для установки и креплений звездочек транспортера в сборе. Вверху в передней части боковин бункера имеются два окна для установки узлов приводных звездочек 6 транспортера, а внизу – два окна для установки звездочек в сборе 2.

Внутри бункера на наклонной части расположены направляющие для цепи скребкового транспортера.

Скребковый транспортер 1 – основной рабочий орган кормораздатчика. Он состоит из двух параллельных цепей с прикрепленными к ним скребками. Цепи – роликовые, скребки – сварные, расположенные на транспортере через каждые 228,6 мм.

Коробка выгрузная 15 крепится болтами к передней стенке бункера и к выгрузному окну. Внутри ее находятся качающиеся заслонки, которые перемещаются и фиксируются при помощи рычагов.

Раздающее устройство крепится к выгрузной коробке болтами. Шнеки выгрузные 14 (левый и правый) выполнены консольно на обе стороны. Витки изготовлены из листовой стали и приварены к трубчатым валам. Вал шнеков устанавливается на двух подшипниках качения, корпуса которых крепятся к боковым стенкам кожухов шнеков, с шарнирно прикрепленным правым и левым 16 лотками, по которым корм скатывается в кормушки. К кожуху шнеков и правому лотку крепится гидроцилиндр. Лотки соединены тягой.

Вал промежуточный передает вращение шнекам с помощью передачи; на конце вала имеется кулачковая муфта с рычагом 13, которая служит для выключения шнеков.

Редуктор (одноступенчатый, конический) передает вращение на приводные звездочки 6 скребкового транспортера, а также на шнеки – через промежуточный вал. Редуктор установлен лапами корпуса на кронштейн рамы кормораздатчика и укреплен болтами.

Ходовая часть 17 состоит из рамы и двух полуосей в сборе. Рама сварена из швеллера. Сверху к лонжеронам рамы приварены кронштейны для установки редуктора. С каждой стороны рамы приварено по два кронштейна для крепления бункера. Рама присоединяется к трактору при помощи прицепной серьги 4 и пальца. При отсоединении кормораздатчика от трактора рама опирается на колесную пару и подножку – домкрат 3 (последняя при транспортном положении убирается).

Подножка – домкрат 3 состоит из кронштейна и винтового домкрата, позволяющего регулировать высоту расположения прицепной серьги. Колесная пара состоит из полуосей в сборе и двух колес. Полуось представляет собой цапфу, запрессованную в литой кронштейн. На цапфах при помощи роликовых конических подшипников устанавливаются ступицы колес. Полуоси в сборе крепятся к раме болтами. Вал приводных звездочек установлен на двух шариковых подшипниках в литом корпусе.

Натяжное устройство состоит из направляющих, подвижных вставок в отверстия которых вставляется натяжной вал, натяжных винтов с воротками и пружинами. Пружинные амортизаторы поставлены на натяжном валу для того, чтобы при попадании твердых частиц корма между цепями и ведущими или ведомыми звездочками натяжной вал мог отклоняться (это предупреждает поломку и заклинивание транспортера). Приводные цепи натягиваются отклоняющими звездочками.

Технологический процесс. Загрузка кормораздатчика производится имеющимися в хозяйстве загрузочными средствами через верхнее загрузочное окно или вручную через боковое окно.

При загрузке сыпучих кормов необходимо периодически включать скребковый транспортер; при этом выгрузные окна должны быть перекрыты.

Количество загружаемого в бункер корма должно быть не более 3 тон, а при работе машины на смешивании – не более ⅔ емкости бункера.

Смешивание и выгрузка корма производятся скребковым транспортером 1, расположенным внутри бункера 12 (см. рис. 25). При смешивании выгрузные окна 7, расположенные в передней части бункера, закрываются, а шнеки 14 выключаются.

При раздаче кормов выгрузные окна открываются и корм планками скребкового транспортера направляется в выгрузную коробку 15, где при помощи шнеков направляется по лоткам 16 в кормушки 18. При этом шнеки должны быть включены.

Продолжительность смешивания (6–10 мин) зависит от количества корма и физических свойств его компонентов.

Подведя машину к кормушкам, тракторист устанавливает лотки 16 в рабочее положение, открывает заслонки, после чего включает вал отбора мощности трактора и производит раздачу, передвигаясь вдоль кормушек с рабочей скоростью агрегата. Норма выдачи корма устанавливается рычагами заслонок до раздачи в кормушки.

Во время транспортировки кормораздатчика лотки должны находиться в транспортном положении. При этом следует избегать резкого торможения агрегата.

Кормораздатчик КУТ-3А – полунавесная машина, агрегатируемая с трактором Т-28 или «Беларусь».

Подготовка к работе и эксплуатация.Перед пуском кормораздатчика в эксплуатацию необходимо произвести следующие работы:

1) проверить крепление всех механизмов и узлов ма­шины и при необходимости подтянуть крепления;

2) смазать всё узлы и механизмы кормораздатчика в соответствии с картой смазки; проверить уровень масла в картере и при необходимости долить его;

3) проверить давление воздуха в шинах колес;

4) проверить уровень рабочей жидкости в масляном баке трактора;

5) соединить карданную передачу с валом отбора мощности трактора. Вилки шлицевого и круглого валов должны находиться в одной плоскости;

6) присоединить трубы гидропривода к распределителю трактора;

7) плавно включить вал отбора мощности трактора;

8) опробовать кормораздатчик без нагрузки, проверить работу всех узлов и механизмов.

Кормораздатчик обслуживает один тракторист.

Подъехав к кормушкам, тракторист устанавливает лотки в рабочее положение, открывает заслонки, включает вал отбора мощности трактора и производит раздачу кормов. Окончив раздачу, тракторист выключает вал отбора мощности, закрывает заслонки, устанавливает лотки в транспортное положение.

В процессе эксплуатации кормораздатчика может возникнуть необходимость в проведении следующих регулировок:

1) регулировка (натяжение) скребкового транспортера осуществляется вращением винта натяжного устройства. Цепь транспортера считается натянутой, если нижняя ветвь цепи транспортера у бокового люка приподнимается на 40 мм при приложении к середине скребка усилия в 20 H; при этом перекос скребка не допускается;

2) регулировка натяжения приводных цепей осуществляется перемещением отклоняющих звездочек вдоль паза кронштейна. Натяжение цепей считается нормальным, если в середине пролета цепь отклоняется на 25–40 мм при приложении усилия в 10 H;

3) регулировка зацепления конической пары редуктора осуществляется изменением количества регулировочных прокладок между корпусом редуктора и стаканом, а так же перестановкой прокладок между корпусом и крышкой с одной стороны на другую (все снятые с правой стороны редуктора прокладки устанавливают на левую сторону или наоборот);

4) предохранительная муфта на заводе отрегулирована на номинальный крутящий момент – 35 Hм. Если при эксплуатации муфта преждевременно сработалась, необходимо подтянуть регулировочную гайку на 1–1,5 оборота. Нельзя подтягивать пружину до соприкосновения витков, так как в этом случае детали кормораздатчика могут поломаться вследствие перегрузки.

Техническое обслуживание. Чтобы обеспечить бесперебойную работу кормораздатчика КУТ-3А, необходимо проводить своевременный уход, заключающийся в периодическом осмотре узлов, подтяжке креплений, смазке и регулировке механизмов.

Ежедневный технический уход. Перед пуском кормораздатчика в работу необходимо проверить следующее:

1. состояние болтовых соединений особенно затяжку гаек крепления дисков колес, крепления цапф в сборе к раме и венцов приводных звездочек;

2. надежность крепления лотков;

3. натяжение приводных цепей;

4. натяжение цепей скребкового транспортера;

5. давление в шинах колес;

6. наличие масла в редукторе по контрольной пробке (подтекание масла через уплотнение не допускается);

7. работу натяжного устройства транспортера.

После каждой раздачи кормов необходимо очистить кормораздатчик от грязи, а также смыть остатки кормов со стенок бункера и транспортера.

Периодический технический уход. Через каждые 20–24 ч работы необходимо:

1. проверять состояние скребкового транспортера;

2. проверять надежность шплинтовки соединений и прямолинейность скребков; при необходимости отрихтовать скребки;

3. смазывать подшипник скольжения натяжного ролика;

4. смазывать, игольчатые подшипники шарнирной передачи.

Через каждые 100–120 ч работы необходимо:

1. осматривать подшипниковые узлы, обращая внимание на величину осевого и радиального люфтов; при этом необходимо ослабить натяжение транспортера и приводных цепей;

2. смазывать узлы машины.

Через каждые 200–240 ч работы необходимо:

1. проверять величину износа рабочей части передних направляющих транспортера; при необходимости их ремонтируют твердосплавной наплавкой с последующей обработкой или заменяют направляющие;

2. проверять люфт колес ходовой части и при необходимости регулировать их;

3. смазывать узлы машины.

Page 11

Цель работы. Изучение устройства и работы универсальной дробилки кормов КДУ-2,0 «Украинка», частичная разборка-сборка, регулировки и оценка ее технического состояния.

Оборудование, инструмент и наглядные пособия. Универсальная дробилка кормов КДУ-2,0 «Украинка», набор слесарного инструмента, плакаты, учебные пособия, инструкционно-технологическая карта.

Содержание работы.

1. Изучить устройство и работу универсальной дробилки кормов КДУ-2,0 н ее основных сборочных единиц.

2. Произвести частичную разборку-сборку универсальной дробилки и выполнить регулировочные операции.

3. Включить в работу универсальную дробилку кормов и выполнить операции ее технического обслуживания.

4. Составить и сдать отчет о проделанной работе.

Методические указания к работе. Стационарная кормодробилка КДУ-2,0 «Украинка» предназначена для дробления всех видов зерновых кормов, сухих и влажных стебельчатых культур, кукурузных початков, жмыхового шрота и других видов кормов. Дробилка может применяться в кормоцехах, мельницах и кормоприготовительных отделениях животноводческих ферм. Машину обслуживают два человека.

Кормодробнлка КДУ-2,0 «Украинка» (рис. 9) состоит из следующих сборочных единиц: измельчающего устройства с режущим барабаном, транспортерным питателем зерновым бункером и муфтой предельного момента; дробильной камеры с дробильным барабаном и вентилятором; циклона со шлюзовым затвором, прямым и обратным трубопроводами; электропривода с комплектом пускового оборудования; контрпривода, устанавливаемого на место электродвигателя, для работы с трактором (поставляется по особому заказу); рамы.

Рис. 9. Кормодробилка универсальная КДУ-2,0:

1 – обратный трубопровод; 2 – улитка циклона; 3 – циклон; 4 – редуктор шлюзового затвора; 5 – шлюзовой затвор; 6 – рамка амперметра-индикатора; 7 – приемный бункер; 8 – раструб циклона; 9 – прессующий транспортер; 10 – дробильная камера; 11 – подающий транспортер; 12 – редуктор транспортера; 13 – электродвигатель; 14 – шкив с автоматической фрикционной муфтой; 15 – рама; 16 – фильтр.

Транспортерный питатель для подачи в дробилку грубых и сочных кормов состоит из горизонтального ленточного транспортера и наклонного прессующего транспортера плавающего типа. Транспортерная лента горизонтального транспортёра изготовлена из прорезиненной ленты, концы которой соединены замком.

Пластины наклонного транспортера имеют вертикальные захватывающие ребра. Рамку верхнего наклонного транспортера образуют две пластинчатые боковины, соединенные двумя стяжными винтами с внутренней коробкообразной лыжей. На нижнем валу транспортера, который вращается в опорах подшипников, жестко закреплены звездочки и ролик.

Верхние подшипниковые опоры боковин шарнирно закреплены в обоймах вертикальных стенок кожуха транспортера, обеспечивая возможность свободного поворачивания всего транспортера. На выступающие концы подшипниковых опор с обеих сторон надеты отходящие вверх рычаги, соединенные натяжными пружинными устройствами, обеспечивающими прижим наклонного транспортера вниз.

Перемещение вниз нижней части наклонного транспортера ограничивают упорные пластинки, закрепленные «а вертикальных стенках кожуха транспортера. К правой стенке над противорежущей пластиной прикреплен отсекатель.

Привод горизонтального и наклонного транспортеров осуществляется цепными передачами от специального редуктора, закрепленного под рамкой горизонтального транспортера. Конструкция редуктора обеспечивает не только включение транспортеров в работу и выключение из работы, но и включение обратного хода транспортерных лент.

Зерновой ковш закреплен над верхним окном камеры ножевого барабана. В задней скатной стенке горловины камеры установлен магнитный сепаратор для улавливания металлических включений из зерна, проходящего из ковша в дробильную камеру.

Для регулирования подачи зерна в приемной горловине зернового ковша служит поворотная заслонка с рычажным механизмом и фиксирующим зажимом.

Измельчающее устройство дробилки КДУ-2,0 включает: режущий барабан (рис. 10), транспортерный питатель для подачи грубых и сочных кормов и зерновой ковш для подачи зерна. Измельчающее устройство закрепляется на переднем наклонном окне дробильного барабана.

Рис. 10. Режущий барабан:

1 – муфта; 2 – корпус подшипника; 3 – стенка; 4 – нож; 5 – болт; 6 – винт упорный; 7 – шнек; 8 – шпонка; 9 – подшипник; 10 – сменная звездочка.

Каждый из трех спирально выгнутых ножей режущего барабана жестко закреплен, двумя болтами на опорных поверхностях двух фигурных стальных дисков. Ножи устанавливают с зазором до 0,6 мм относительно режущей кромки противорежущей пластины с помощью двух упорных винтов.

Вал ножевого барабана вращается на конических роликоподшипниках, запрессованных в чугунные литые корпуса, которые жестко крепятся в гнездах стенок рамы режущего барабана.

Камера рамы режущего барабана, сваренная из стальных боковых стенок, служит продолжением стенок корпуса рамы питающего транспортера.

Верхнее окно камеры ножевого барабана закрыто откидной крышкой, к которой прикреплен болтами зерновой ковш. В нижней части камеры расположена цилиндрическая приемная горловина дли соединения с обратным воздушным трубопроводом, имеющим продольную щель через всю ширину камеры для направления воздушного потока в дробильную камеру. В средней части камеры между режущим барабаном и лентой транспортерного питателя на специально приваренной опоре закреплена массивная стальная противорежущая пластина.

Для установления минимального зазора с рабочей поверхностью транспортерной ленты, предотвращающего затягивание корма в щель между противорежущей пластиной и лентой, предусмотрена специальная планка.

На одном конце вала ножевого барабана установлена муфта предельного момента с двухручьевым шкивом клиноременной передачи от вала электродвигателя. На другом конце вала ножевого барабана установлена ведущая звездочка z=13 цепной передачи к редуктору транспортерного питателя.

Дробильная камера (рис. 11) состоит из литого чугунного корпуса с, вставными боковинами, несущими корпуса подшипников главного вала дробилки и задней стенки, выполненной в виде откидывающейся на шарнире крышки. Боковины дробильной камеры жестко закреплены на корпусе болтами.

Рис. 11. Дробильная камера и вентилятор:

1 – шкив дробильного барабана; 2 – роликовый подшипник; 9 – распорная втулка; 4 – дробильный молоток; 5 – диск дробильного барабана, 6 – ось дробильного барабана; 7 – сменное решето; 8 – крышка дробильной камеры; 9 – корпус дробильной камеры; 10 – рама; 11 – дека; 12 – манжета; 13 – крылач вентилятора; 14 – крышка кожуха вентилятора; 15 – патрубок всасывающий.

Крышка дробильной камеры, выполнена в виде коробки, боковые стенки которой входят между выступающими в просвет боковыми стенками корпуса, и притягивается к станине двумя накидными замками. На внутренней поверхности корпуса жестко закреплены, две рифленые деки из отбеленного чугуна. Верхнее скошенное окно корпуса служит для соединения с измельчающим устройством, для чего снаружи корпуса имеется четыре прилива. Внизу крышка дробильной камеры имеет окно, к которому на быстросъемных замках жестко крепится всасывающий трубопровод вентилятора.

Внутри дробильной камеры на главном валу расположен дробильный барабан. На одном конце вала установлен приводной шестиручьевый шкив, на другом – закреплен ротор вентилятора.

Кожух вентилятора жестко прикреплен болтами к корпусу подшипника главного вала и к боковине дробильной камеры:

В заднюю часть дробильной камеры вставляется сменное решето, зажимаемое в рабочем положении при подтягивании крышки камеры накидными замками. При откидывании крышки сменное решето свободно выпадает из дробильной камеры. Крышка дробильной камеры образует зарешетную полость, через которую воздушный поток, выходящий из дробильной камеры вместе с частицами измельченного корма по всасывающему соединительному трубопроводу, направляется в вентилятор.

Окно в задней стенке дробильной камеры плотно закрывается крышкой, откидывающейся на шарнире.

При установке в дробильную камеру вместо сменного решета вставной горловины для обработки сочных кормов задний обрез горловины совпадает с окном в крышке дробильной камеры. На место откинутой вниз крышки гайками крепят специальный отражательный козырек-дефлектор.

Дробильный барабан (рис. 11) состоит из шести плоских дисков, закрепленных на шпонке на главном валу через распорные шайбы. В периферийной части через диски проходят шесть стальных пальцев, на которых шарнирно крепятся комплекты дробильных молотков (по 15 штук в комплекте). Заданное расстояние между молотками фиксируется распорными втулками.

Вентилятор (рис. 11) дробилки имеет шестилопастный ротор.

Всасывающий трубопровод вентилятора имеет съемное колено, закрепляемое четырьмя накидными замками.

Привод дробильного барабана и вентилятора осуществляется от вала электродвигателя клиноременной передачей с шестью ремнями. От вала дробильного барабана {рис. 9) одним клиновым ремнем через червячный редуктор 4 осуществляется привод шлюзового затвора 5.

Циклон 3 (см. рис. 9) с расположенным под ним шлюзовым затвором 5 крепится рядом с дробильной камерой на приставной раме. Циклон выполнен из листовой стали толщиной 1,4 мм. Состоит из нижней конусной части и верхней цилиндрической со спиральной входной горловиной. Верхняя выходная горловина выполнена в виде улитки.

Нижний обрез конусной части циклона соединен со шлюзовым затвором. В нижней конической части циклона имеется два окна: смотровое, закрытое оргстеклом, и очистное, закрытое быстросъемной крышкой.

Шлюзовой затвор 5 (см. рис. 9) состоит из чугунного литого корпуса, двух боковин, отлитых совместно с корпусами подшипников, и ротора, вращающегося внутри корпуса.

В нижней части шлюзового затвора крепится двухпатрубковый раструб 8 с перекидной заслонкой и мешкодержателями. Приемная горловина циклона соединена с дробильной камерой обратным трубопроводом.

Для устранения местного подпора воздуха перед входом в дробильную камеру прямой участок обратного трубопровода выполнен в виде полотняного фильтрующего рукава 16 увеличенного диаметра, через который утекает часть воздушного потока замкнутой воздушной системы. Недостающее количество воздуха возмещается подсасыванием вместе с кормом, поступающим в дробилку.

Технологический процесс.

1. При дроблении сыпучих зерновых кормов отключают привод питателя режущего барабана за счет снятия клиновидных ремней. Устанавливают сменное решето с отверстиями соответствующего диаметра для получения необходимой степени измельчения.

Зерно из приемного бункера 1 (рис. 12), проходя по наклонному днищу горловины, очищается магнитным сепаратором 6 от случайно попавших металлических предметов и попадает в дробильную камеру, где под действием ударов молотков 3, дек и решета 5 дробится. Измельченные частицы диаметром, равным диаметру отверстий решета или меньше его, проваливаются в зарешетную полость, из которой потоком воздуха, создаваемого вентилятором 4, по всасывающему патрубку и напорному трубопроводу переносятся в циклон 10. В циклоне воздух отделяется от частиц, которые оседают и лопастями ротора шлюзового затвора 9 через раструбы 8 мешкодержателей сбрасываются в мешки или в приемный ковш транспортера. Воздух через обратный трубопровод, фильтровальный рукав 11 и приемный воздушный патрубок попадает обратно в дробильную камеру.

2. При измельчении стебельчатых грубых кормов в муку, например сена, кукурузных початков, включают измельчающий аппарат; корм в дробильную камеру подает питатель. Горловина зернового ковша перекрывается.

Загружается корм равномерным слоем на ленту транспортера. Частицы корма, отрезанные ножами, отбрасываются на скатную доску и под действием струи обратного потока поступают в дробильную камеру, где измельчаются до требуемых размеров и транспортируются аналогично сыпучим кормам.

3. При резке и измельчении сочных или зеленых стебельчатых кормов всасывающий патрубок отъединяют от крышки и вентилятора. На входной патрубок вентилятора ставят ограничительную сетку. Вместо сменного решета вставляют выбросную горловину и закрывают окно в крышке дробильной камеры. Снаружи над окном устанавливают отражательный козырек-дефлектор. В этом случае корм по питающим транспортерам поступает в ножевой барабан измельчается и попадает в дробильную камеру, где окончательно измельчается. Измельченная масса молотками ротора дробилки выбрасывается через вставную горловину и заднее окно в крышке дробильной камеры. Воздушный поток, создаваемый вентилятором, проходя через циклон, обратный трубопровод, дробильную камеру и выбросную горловину, препятствует налипанию корма на стенках камеры и способствует выбрасыванию измельченного продукта.

Рис. 12. Принципиально-технологическая схема кормодробилки КДУ-2,0:

1 – приемный бункер; 2 – ножевой барабан; 3 – молотки; 4 – вентилятор; 5 – решето; 6 – магнитный сепаратор; 7 – заслонка; 8 – раструб; 9 – шлюзовой затвор; 10 – циклон; 11 – фильтровальный рукав.

Регулировки.

1. Степень измельчения сыпучих кормов регулируют установкой сменных решет. Для получения мелкого дробления в камеру дробилки устанавливают решето с отверстиями 4 мм, среднего – 6 и крупного – 8 мм.

2. При измельчении сухих стебельчатых кормов сменное решето вынимают или устанавливают решето с отверстиями 10 мм.

3. Зазор 0,3...0,6 мм между ножами, режущего барабана и противорежущей пластиной регулируют, перемещая ножи по пазам с помощью болтов.

Подготовка к работе. Перед началом работы заливают масло в коробки редукторов шлюзового затвора и транспортерного питателя до установленного уровня. Смазывают подшипники в соответствии со схемой и картой смазки. Проверяют натяжение приводных ремней и •цепей. Натяжение приводных ремней между валами электродвигателя и дробильного барабана регулируют перемещением электродвигателя. Для этого ослабляют затяжку болтов, крепящих электродвигатель на раме. Электродвигатель перемещают с помощью натяжных подвижных планок, размещенных на раме машины. Натяжение остальных ремней и цепей регулируют натяжными роликами или звездочками. Для этого отпускают затяжные гайки (болты), крепящие кронштейны и натягивают ремни так, чтобы прогиб каждого ремня в средней части при нажатии с усилием 50...70 Н составлял 20...25 мм. Приводные ремни цепи натягивают так, чтобы прогиб составлял 5...15 мм.

Проверяют зазор между лезвиями ножей режущего барабана и противорежущей пластины и зазор между противорежущей пластиной и рабочей поверхностью горизонтального транспортера. Для этого предварительно откидывают верхний кожух, снимают натяжные устройства верхнего транспортера и отводят его вверх. Регулировку зазора проводят для каждого ножа в отдельности. При этом отпускают затяжку крепежных болтов ножа и устанавливают правильное положение ножа посредством двух установочных винтов, упирающихся в затылочную часть ножа. После окончания регулировки крепежные болты ножей должны быть затянуты, а установочные винты зафиксированы контргайками. Зазор между противорежущей пластиной и рабочей поверхностью транспортерной ленты должен быть минимальным, чтобы устранить затаскивание частиц корма под противорежущую пластину. Для этого ослабляют крепление противорежущей пластины и производят необходимое перемещение кронштейна.

Натяжение ленты горизонтального транспортера изменяют натяжными болтами, а натяжение наклонной транспортерной ленты – перемещением натяжных звездочек, заключенных внутри корпуса транспортера, перемещением натяжных болтов в прорезях боковин.

Проверяют прочность крепления ножей режущего барабана и крепление молотков и их осей на дробильном барабане, легкость хода и надежность действия поворотной заслонки зернового ковша и перекидной заслонки раструба циклона.

Обкатывают машину на холостом ходу. Перед включением машины необходимо убедиться в прочности крепления оградительных кожухов и убрать с горизонтального транспортера и зернового ковша предметы, попадание которых в дробилку может вызвать поломку машины. При холодной обкатке проверяют правильность взаимодействия сборочных единиц и механизмов машины. При появлении шума необходимо выявить причины их появления и устранить.

Машину обкатывают под рабочей нагрузкой. При этом проверяют нормальность рабочего процесса при обработке сухих кормов с прохождением обработанного продукта через циклон и при обработке влажных кормов с выбросом обработанного корма через вставную горловину.

Техническое обслуживание (ежедневное и периодическое). При ежедневном обслуживании перед началом работы очищают дробилку от пыли, грязи и остатков кормов; освобождают крепление крышки и кожухи ограждения; ставят необходимое решето и проверяют крепления осей молотков; проверяют крепление корпусов , подшипников, редукторов и электродвигателя, крепление ножей и зазор между ножами и пластиной, натяжение ремней, цепей и лент транспортёров; убеждаются в отсутствии заедания заслонки зернового ковша и шлюзового затвора; производят сказку согласно таблице смазки; ставят на место кожухи ограждения и крышки; удаляют из машины посторонние предметы; прокручивают на полтора-два оборота вал электродвигателя вручную и убеждаются в отсутствии задеваний; проверяют работу дробилки на холостом ходу и под нагрузкой.

Во время работы следят за равномерностью подачи корма по транспортеру или из зернового ковша по показаниям амперметра индикатора; при остановках проверяют степень нагрева электродвигателя, редуктора, шлюзового затвора, корпусов подшипников вала; предупреждают попадание в измельчающие органы посторонних предметов.

После работы очищают дробилку от остатков кормов прокручиванием вхолостую в продолжение 1...2 мин; включают электродвигатель, отключают общий рубильник и после остановки очищают рабочие органы от остатков кормов; проверяют нагрев подшипников дробилки.

При периодическом техническом обслуживании, которое проводят через 75...90 ч работы, выполняют операции ежедневного технического обслуживания, кроме того: проверяют величину износа молотков и при необходимости проворачивают их на новую рабочую грань или после использования всех граней молотки заменяют; проверяют шаблоном остроту лезвий и при необходимости затягивают их, а при больших износах или сколах заменяют отдельные ножи или весь комплект; регулируют зазор между лентой горизонтального транспортера и противорежущей пластиной; производят смазку дробилки согласно таблице смазки.

Техническая характеристика КДУ-2,0 «Украинка»

Масса, кг
Тип электродвигателя А02-72-4
мощность, кВт
частота вращения, мин -–1
напряжение, В 220…380
Габаритные размеры кормодробилки, мм 2800x1550x3000
Производительность, т/ч  
при дроблении зерна До 2,0
при дроблении жмыха До 3,0
при измельчении сена До 0,8
при измельчении влажных кукурузных початков До3,0
Дробильный барабан:  
диаметр, мм
ширина, мм
частота вращения ротора, мин -–1
Транспортер верхний, прижимной:  
тип Цепной планчатый
ширина полотна, мм
скорость движения полотна, м/с 0,22
Вместимость приемного бункера, м3 0,15

Отчет о работе.

1. Вычертить принципиально-технологическую схему универсальной дробилки кормов КДУ-2,0.

2. Привести основные технические данные дробилки КДУ-2,0.

3. Описать основные технологические регулировки дробилки и дать оценку ее технического состояния.

Контрольные вопросы.

1. Какие виды кормов перерабатывают на дробилке КДУ-2,0?

2. Из каких основных сборочных единиц состоит дробилка кормов?

3. Каково назначение и устройство измельчающего устройства и дробильной камеры дробилки кормов КДУ-2,0?

4. По какой технологической схеме осуществляется измельчение: а) сыпучих; б) сухих стебельчатых и в) влажных стебельчатых кормов?

Работа 5

Дробилка безрешетная ДБ-5

Цель работы. Изучение устройства и работы дробилки безрешетной ДБ-5, частичная разборка-сборка, регулировки и оценка ее технического состояния.

Оборудование, инструмент и наглядные пособия. Дробилка безрешетная ДБ-5, набор слесарного инструмента, плакаты, учебные пособия, инструкционно-технологическая карта.

Содержание работы.

1. Изучить устройство и работу дробилки безрешетной кормов ДБ-5 и ее основных сборочных единиц.

2. Произвести частичную разборку-сборку универсальной дробилки и выполнить регулировочные операции.

3. Включить в работу универсальную дробилку кормов и выполнить операции ее технического обслуживания.

4. Составить и сдать отчет о проделанной работе.

Методические указания к работе. Стационарная кормодробилка ДБ-5 предназначена для измельчения различных видов фуражного зерна с нормальной и повышенной влажностью. Машина выпускается для применения в качестве самостоятельной установки ДБ-5-1 и ДБ-5-2 для комбикормового комплекта ОЦК-4. В отличие от дробилки ДБ-5-1 и ДБ-5-2 нет выгрузного шнека. Машину обслуживают два человека.

Кормодробилка ДБ-5 (рис. 13а) состоит из следующих сборочных единиц: ротора 8, корпуса 10, бункера 7, разделительной камеры 2, рамы 11 и электродвигателя 13.

Ротор (рис. 13б) состоит из вала 4 с набором дисков 3 и шарнирно качающихся на осях молотков 1. Диски и распорные втулки на валу удерживаются с помощью гайки. Расстояние между молотками на осях обеспечивается с помощью распорных втулок и шплинтов.

Ротор приводится во вращательное движение от электродвигателя через втулочно-пальцевую муфту 12 (рис. 13а). Горловины на корпусе 10 служат для установки разделительной камеры 2 и кормопровода 3. Для обслуживания камеры предусмотрена откидная крышка 9. Внутренняя цилиндрическая поверхность корпуса 10 выложена деками, которые опираются на секторы и прижимаются к ним болтами. Расположение дек относительно дисков ротора обеспечивается регулировкой положения секторов с помощью эксцентриков.

Для предотвращения случайного включения дробилки при открытой крышке 9 на корпусе служит конечный выключатель.

Бункер имеет загрузочную и смотровую горловины. В нижней части бункера установлен привод заслонки (рис. 13в).

На наклонной стенке для улавливания металлических предметов установлена батарея постоянных магнитов 4. По высоте в бункере 1 расположены датчики нижнего и верхнего уровня, с помощью которых включается и выключается загрузочный шнек. Поворот заслонки осуществляется как от привода, так и вручную рычагом 2. При ручном управлении контроль за загрузкой ведется по показанию амперметра. При установившемся режиме рычаг 2 необходимо зафиксировать.

Рис. 13. Устройство дробилки:

а – дробилка: 1 – фильтр; 2 – камера разделительная; 3 – кормопровод; 4 – сепаратор; 5 – откидывающаяся крышка; 6 – ведомый двухступенчатый шкив; 7 – бункер; 8 – ротор; 9 – крышка откидная; 10 – корпус; 11 – рама; 12 – втулочно-пальцевая муфта; 13 – электродвигатель; б – ротор: 1 – молотки; 2 – ось; 3 – диск; 4 – вал; в – привод заслонки; 1 – бункер; 2 – рычаг; 3 – заслонка; 4 – батарея постоянных магнитов; 5 – конечный выключатель.

Привод заслонки состоит из электродвигателя РД-0,9, зубчатой передачи и вала, на котором закреплена заслонка. Дополнительно на этом валу установлена электромагнитная муфта, которая при отключении сети дает возможность заслонке мгновенно под действием собственной массы перекрывать доступ зерна в дробилку.

Все механизмы смонтированы в корпусе. На крышке корпуса установлен конечный выключатель 5, который в автоматическом режиме замыкает цепь звуковой сирены при прекращении поступления зерна. Рычаг 2 позволяет поворачивать заслонку 3 и стопорить ее при ручном управлении.

Блок питания электромагнитной муфты расположен в шкафу управления.

Разделительная камера 2 (рис, 13а) служит емкостью, где происходит отделение измельченных частиц от воздуха, а также разделение измельченного продукта на крупную и мелкую фракции (рис. 14б). Перегородки в разделительной камере образуют каналы: один – для возврата воздуха в дробильную камеру и другой – для возврата крупной фракции на доизмельчение.

На одной из боковых стенок камеры расположен рычаг заслонки 5 (рис. 14б), положение которого фиксируется в пазах сектора. На другой стенке установлена откидная крышка 5 (рис. 13а) для смены сепаратора 4 (рис. 14б). На верхней части камеры 3 крепится откидными болтами тканевый фильтр для частичного сброса циркулируемого в дробилке воздуха. В нижней части камеры 3 установлен шнек 8 для выгрузки готового продукта. Привод его осуществляется двухступенчатой ремённой передачей.

Рис. 14. Схемы дробилки. ДБ-5-1:

а – кинематическая: 1, 5, 11, 14 – электродвигатели; 2, 7, 15 – шкив

d = 90 мм; 3, 8, 16, 23 – ремень; 4, 17,— шкив d = 200 мм;

6 – вал n = 0,5 мин –1; 10 – зубчатое колесо z = 170; 12, 20, 26, 29 – шнек;

13, 27, 30 – вал n = 415 мин –1; 18 – зубчатое колесо z = 17; 19 – барабан дробильный; 21 – вал n = 457 мин –1; 22, 24 – шкив d = 224 мм; 25 – вал n = 1180 мин –1; 28 – звездочка z = 13; б – технологическая; 1 – шнек загрузочный;

2 – бункер для зерна; 3 – камера разделительная; 4 – сепаратор; 5 – заслонка; 6 – шнек выгрузной; 7 – камера дробильная; 8 – шнек камеры; 9 – заслонка; 10 – датчики уровня.

Ведущий шкив первой ступени выполнен вместе с втулочно-пальцевой полумуфтой. Ведомый шкив первой ступени является ведущим для второй ступени.

Степень измельчения регулируют поворотом заслонки 5 разделительной камеры 3.

На раму 11 (рис. 13а) крепится корпус дробилки и электродвигатель.

Натяжение ремня первой ступени привода шнека разделительной камеры осуществляется поворотом кронштейна, на котором закреплена ось ведомого шкива. Стрела прогиба ремня при приложении усилия 12 Н должна быть 2,8...3,2 мм.

Натяжение ремня второй ступени регулируют, перемещая ось в пазу кронштейна.

Радиальный зазор между диском ротора и сектором должен быть 1...1.5 мм. Регулируют зазор в такой последовательности: ослабляют болты крепления секторов; вращением эксцентриков приближают секторы до упора в диск ротора, после чего поворачивают эксцентрики против часовой стрелки на угол 15...20 ° и затягивают болты крепления секторов.

Шкаф управления расположен рядом с дробилкой. На дверях шкафа управления установлена основная аппаратура амперметр, показывающий нагрузку электродвигателя привода дробилки, переключатель режимов, а также кнопки включения дробилки и шнеков; под ними – автоматический регулятор и тумблер его включения.

Автоматический регулятор представляет собой электронный блок, который предназначен для управления приводом заслонки. Он автоматически поддерживает такое положение заслонки, при котором количество поступающего зерна обеспечивает номинальную загрузку электродвигателя. На правой стенке шкафа управления находится сетевой выключатель, на левой – сирена, сигнализирующая об окончании подачи зерна в дробилку.

Технологический процесс.Материал, подлежащий измельчению, подают из бурта или хранилища загрузочным шнеком в приемный бункер дробилки, откуда вместе с циркулирующим по замкнутому циклу воздухом через загрузочное окно направляют в дробильную камеру на измельчение. Измельченный материал через выходное окно выбрасывается в выгрузной трубопровод и подается в разделительную камеру для разделения на фракции. Готовый продукт, отвечающий заданной степени измельчения, выводится за пределы дробилки и выгрузным шнеком подается в тару или на линию приготовления комбикормов, а крупнофракционный возвращается на повторное измельчение вместе с новой порцией зерна.

Конструкция дробилки ДБ-5 обеспечивает замкнутую систему циркуляции воздуха вместе с измельченным продуктом. Это обеспечивает снижение запыленности окружающей среды.

Металлические включения, находящиеся в зерне, улавливает магнитный сепаратор.

Автоматический регулятор загрузки зерна постоянно регулирует подачу зерна в дробильную камеру и обеспечивает работу дробильного аппарата в номинальном режиме.

Регулировки. При износе рабочих граней у молотков необходимо их переворачивать таким образом, чтобы в работе участвовали неизношенные грани. Сильно изношенные и поломанные молотки необходимо заменить новыми.

Качество помола регулируют заслонкой, установленной в разделительной камере.

При задевании ленты шнека о кожух, когда затрудняется вращение, неполадку устраняют рихтовкой ленты или кожуха.

Техническое обслуживание(ежедневное и периодическое). При ежедневном обслуживании перед началом работы очищают дробилку от пыли и остатков корма, предварительно убедившись, что машина отключена от электросети. Проверяется крепление осей молотков на барабане, ведётся протяжка всех болтовых соединений, проверяется натяжение ремней и цепей. Проверяется надежность заземления. Смазывают сборочные единицы согласно карте смазки, убеждаются в отсутствии заеданий шнеков. Проверяют работу дробилки на холостом ходу.

Периодическое обслуживание проводят через 90 часов работы. При этом выполняют все операции ежедневного ТО и, кроме того: проверяют величину износа дробильных молотков, проверяется балансировка барабана с молотками, работоспособность нижнего и верхнего датчиков уровня зерна в бункере, смазка сборочных единиц ведётся согласно карте смазки.

Техническая характеристика

Показатель ДБ- 5-1 ДБ- 5-2
Производительность, т/ч:    
при дроблении зерна 3-5 3-5
при измельчении:    
корнеплодов – –
соломы, сена – –
зеленой массы – –
Мощность электродвигателя, кВт 32,2 31,1
Высота подачи измельченного корма, м – –
Габариты, мм:    
длина
ширина
высота
Масса, кг
Обслуживающий персонал, чел.

Отчет о работе.

1. Вычертить принципиально-технологическую схему дробилки безрешетной ДБ-5.

2. Привести основные технические данные дробилки ДБ-5.

3. Описать основные технологические регулировки дробилки и дать оценку ее технического состояния.

Контрольные вопросы.

1. Какие виды кормов перерабатывают на дробилке ДБ-5?

2. Из каких основных сборочных единиц состоит дробилка?

3. Каково назначение и устройство измельчающего устройства и дробильной камеры дробилки ДБ-5?

Работа 6

Page 12

Кормоприготовительные машины. При изучении кормо-приготовительных машин надо быть особенно осторожными, так как их активные, измельчающие рабочие органы вращаются с высокой частотой и развивают значительные инерционные силы. Необходимо следить за тем, чтобы частота и направление вращения соответствовали указанным в инструкции. Подача кормов в машину должна быть равномерной. Категорически запрещается проталкивать их руками под прессующие вальцы, к режущему аппарату или в приемную горловину. При забивании рабочих органов необходимо включить реверс, т.е. обратный ход для устранения забивания, а очищать рабочие органы можно только при остановленной машине и выключенном рубильнике. Запрещается стоять во время работы кормоизмельчителей против выбрасываемой массы, а площадку вокруг машины необходимо тщательно очищать, чтобы вместе с кормами в машину не попали посторонние предметы. Не следует также класть посторонние предметы на питающие транспортеры и защитные кожухи. Чтобы убедиться в отсутствии посторонних предметов внутри закрытых кожухов, перед включением двигателя нужно провернуть вручную рабочие органы машины за шкив. Все зубчатые, ременные и цепные передачи машины должны быть ограждены защитными кожухами. Корпуса электродвигателей и пусковых кнопок должны быть надежно заземлены.

Внутрифермский транспорт и транспортеры. При эксплуатации внутрифермского транспорта и транспортеров надо быть предельно внимательным и строго соблюдать установленные правила безопасности труда.

Так, при использовании кормораздатчика КТУ-10А запрещается работать на поворотах свыше 15°, поворачивать трактор относительно его продольной оси на 45°, запрещается при работающем транспортере проталкивать корм и очищать бункер, а также перевозить людей в бункере кормораздатчика.

Все металлические части стационарных транспортеров-раздатчиков должны быть занулены, а передачи и движущиеся рабочие органы защищены кожухами. Очищать рабочие органы кормораздатчиков, смазывать и регулировать их разрешается только при выключенном рубильнике.

При изучении и техническом обслуживании ленточно-тросовых кормораздатчиков со смесителями-дозаторами надо соблюдать осторожность, особенно при очистке приводных барабанов от налипания кормов. Это следует делать удлиненной деревянной лопаткой. При этом надо следить, чтобы руки не попали под движущуюся ленту и барабан. В местах поперечных проходов следует установить переходные настилы со ступеньками над лентой кормораздатчика. При работе кормораздатчиков колебательного типа с эксцентриковым механизмом нельзя стоять близко у торцов колеблющегося желоба, допускать ослабление приводных механизмов. Перед пуском надо своевременно проверить крепления всех соединений и подать сигнал о включении.

Приводные и натяжные устройства навозотранспортеров необходимо оградить. Желоба в проходах и у ворот должны быть сверху закрыты щитами. Люки для прохода навоза на наклонный транспортер ограждают перилами из стальных труб высотой не менее 1,6 м.

Доильные установки. К обслуживанию и работе на доильном агрегате допускается только специально подготовленный персонал, изучивший эксплуатационные документы, прилагаемые к установке, прошедший инструктаж под руководством лица, ответственного за эксплуатацию электрических установок и охрану труда в хозяйстве, научившийся практически обращаться с установками и агрегатами. Все работы, связанные с техническим обслуживанием и устранением неисправностей доильного агрегата, разрешается проводить только при выключенных двигателях. При этом необходимо обесточить агрегат и вывесить плакат: «Не включать – работают люди». Принимают также меры, препятствующие случайной подаче напряжения к месту работы. Запрещается курить в помещениях и пользоваться открытым огнем. Помещения должны быть оборудованы первичными средствами пожаротушения. Перед пуском доильного агрегата необходимо убедиться в исправности всех сборочных единиц и контрольных приборов. Запрещается работать со снятыми ограждениями. При пользовании горячей водой и химикатами для промывки и дезинфекции необходимо соблюдать осторожность. При приготовлении кислотных растворов следует пользоваться резиновыми перчатками и фартуком. При доении коров нужно обращаться с животными спокойно, внимательно и соблюдать необходимую осторожность. Категорически воспрещается хранить посторонние предметы, воспламеняющиеся вещества в помещении вакуумной установки. Все электросиловые установки, а также вакуум-провод должны быть заземлены. Работа без заземления запрещается.

Охладители-очистители и сепараторы. К эксплуатации очистителя-охладителя и сепаратора может быть допущен только обученный персонал. В местах установки очистителя-охладителя и сепаратора необходимо вывесить инструкцию по охране труда при его обслуживании. Запрещается работать на центрифуге, установленной не на фундамент или с отступлением от требований к монтажу, указанных в инструкции. Перед пуском центрифуги необходимо проверить правильность сборки барабана. Включать центрифугу и сепаратор в работу разрешается только после проверки уровня масла. Кнопку управления электродвигателя необходимо расположить вблизи центрифуги и сепаратора, подходы к ней должны быть свободными. Электродвигатель заземлить. Перед пуском установки необходимо проверить крепление крышки прижимами. Категорически запрещается: оставлять работающую установку без надзора; снимать, поправлять или устанавливать приемно-выводное устройство во время вращения барабана, работать на центрифуге и сепараторе с частотой вращения барабана выше указанной в инструкции. Запрещается работать на центрифуге и сепараторе: при обнаружении посторонних шумов; при заедании барабана за детали приемно-выводного устройства; при повышенной вибрации центрифуги и сепаратора в случае попадания в масляную ванну станины молока, воды или моющего раствора; при поломке или потери упругости хотя бы одной пружины вертикального вала; при износе шарикоподшип­ников; с разбалансированным барабаном. Запрещается тормозить барабан посторонними предметами или другими способами, кроме предусмотренных инструкцией. Во избежание разбалансировки барабана и аварии центрифуги и сепаратора категорически запрещается при сборке бара­бана использовать детали от другого барабана, а также уменьшать число тарелок в пакете по сравнению с числом, указанным в паспорте.

Запрещается работать на центрифуге и сепараторе, установленных не на фундаменте и с отступлениями от требований к монтажу, указанных в инструкции. Перед пуском сепаратора необходимо отвести тормоза в нерабочее положение, а также проверить правильность сборки барабана, механизма привода, крепление приемно-выводного устройства. Включать сепаратор в работу разрешается только после проверки уровня масла. Электродвигатель обязательно должен быть заземлен. Категорически запрещается снимать, поправлять или устанавливать приемно-выводное устройство во время вращения барабана.

Пастеризационная установка. К обслуживанию пастеризационной установки допускаются учащиеся, ознакомившиеся с правилами ее эксплуатации. Заземление пульта и двигателей не должно иметь повреждений, сопротивление заземления не более 4 Ом. Перед началом работ с приборами автоматического регулирования необходимо обесточить пульт. На паропроводе должен быть установлен исправный манометр. Давление пара следует поддерживать не выше 50 кПа. Подходы к пульту управления должны быть свободными. Запрещается включать молоко-очиститель, не закрепленный на фундаменте. Перед пуском молокоочистителя необходимо отвести тормоза и стопоры. В случае появления посторонних шумов, стуков, сильных вибраций в молокоочистителе его следует немедленно отключить. Категорически запрещается снимать, поправлять или устанавливать приемно-выводное устройство молокоочистителя во время вращения барабана. Категорически запрещается работать на молокоочистителе с частотой вращения барабана свыше 184 с-1 (8000 мин-1). Раствор каустической соды для мойки пастеризатора следует хранить в эмалированной или стеклянной посуде в определенном месте. Над ней должен быть прикреплен плакат с правилами мойки и обращения с едкими щелочами. Выдерживатель, входящий в комплекс установки, должен быть защищен специальным ограждением.

Глава II

Page 13

Цель работы. Изучение устройства и работы измельчителя-смесителя ИСК-3А, частичная разборка-сборка, регулировки и оценка его технического состояния.

Оборудование, инструмент и наглядные пособия. Измельчитель-смеситель ИСК-3А, набор слесарного инструмента, плакаты, учебные пособия, инструкционно-техлологическая карта.

Содержание работы.

1. Изучить устройство и работу измельчителя-смесителя ИСК-3А и его основных сборочных единиц.

2. Провести частичную разборку-сборку измельчителя-смесителя и выполнить регулировочные операции.

3. Подготовить к работе и включить в работу измельчитель-смеситель кормов, выполнить операции технического обслуживания.

4. Составить и сдать отчет о проделанной работе.

Методические указания к работе. Измельчитель-смеситель ИСК-3А предназначен для дополнительного измельчения соломы, сена и других компонентов кормосмеси и их смешивания при приготовлении рассыпных полнорационных кормосмесей в кормоцехах и кормоприготовительных отделениях ферм крупного рогатого скота и овцеферм. Он также может быть использован как измельчитель грубого и веточного корма различной влажности. При смешивании кормов могут одновременно вноситься различные микродобавки, а при химической обработке соломы – растворы химических веществ. Рекомендуется для всех зон и может применяться в линиях термической обработки соломы и в поточных линиях кормоцехов.

Машину обслуживает один оператор.

Измельчитель-смеситель ИСК-3А состоит из рамы 1 (рис. 1), приемной 7, рабочей 3 и выгрузной 10 камер, шести дек 9 и электропривода.

Рис. 1. Общий вид измельчителя-смесителя кормов ИСК-3А:

1 – рама; 2 – электродвигатель; 3 – рабочая камера; 4 – ножи; 5 – ротор; 6 – вентиль для внесения жидких добавок; 7 – приемная камера; 8 – кожух деки; 9 – дека; 10 – выгрузная камера; 11 – крылач швырялки; 12 – вал ротора; 13 – клиноременная передача; 14 – натяжной болт.

Выгрузная камера соединяется с рабочей камерой фланцем. Между ними вмонтирован шибер, позволяющий регулировать проходное сечение переходника из рабочей камеры в выгрузную. На рабочей камере установлена дополнительная быстросъемная камера с устройством для внесения жидких, добавок. В это устройство входят вентиль со шкалой и форсунка.

К днищу выгрузной камеры крепится корпус подшипников (двух опорных и трех радиальных), в которых вращается вертикально расположенный вал ротора. В нижней части на валу ротора предусмотрена швырялка, а в корпусе – выгрузная горловина. Привод ротора смонтирован на подвижной плите. Он осуществляется от электродвигателя клиноременной передачи.

Регулировки. В боковых полостях рабочей камеры расположены закрытые с наружной стороны кожухами деки двух типов: сплошные с рифленой поверхностью (устанавливаются при смешивании кормов) и с противорезами (устанавливаются при измельчении кормов). Ножи противорезов подпружинены для предохранения их от поломок при попадании в рабочую камеру посторонних предметов.

Технологический процесс (рис. 2). В режиме смешивания предварительно подготовленные к смешиванию корма загрузочным транспортером подают в приемную камеру измельчителя-смесителя. Отсюда они под действием создаваемого швырялкой всасывающего эффекта поступают в рабочую камеру (камеру смешивания) и распределяются вдоль стенок камеры. Здесь корм доизмельчается ножами верхнего яруса ротора и рабочей камеры, смешивается и по спирали опускается вниз, попадая под действие ножей и молотков нижних ярусов. Компоненты корма под действием рабочих органов ротора и зубчатых дек интенсивно перемешиваются, доизмельчаются и превращаются в однородную смесь. Готовая кормосмесь швырялкой подается наружу через выгрузную горловину.

Рис. 2. Принципиально-технологическая схема

измельчителя-смесителя кормов ИСК-3А:

1 – транспортер; 2 – швырялка; 3 – дека; 4 – форсунка; 5 – ротор; 6 – ножик; 7 – противорезы; 8 – молотки; 9 – шибер; 10 – привод; 11 – электродвигатель; 12 – рама камеры; I – приемная. II – рабочая; III – выгрузная.

Подготовка к работе. Перед началом работы проверяют крепление болтовых cоединений крыльчатки, ножей, противорезов, электропривода, натяжение клиновых ремней (проводят путем перемещения подвижной плиты с электродвигателем натяжными болтами). При подготовке к работе устанавливают требуемое число ножей, противорезов или дек в зависимости от режима (измельчения или смешивания), в котором должна работать машина.

В режиме измельчения ИСК-3А комплектуют шестью пакетами ножей противорезов. На роторе монтируют четыре укороченных ножа (1-й ряд), два – четыре длинных ножа (2-й-ряд) и два – четыре зубчатых ножа (3–4-й ряды). Благодаря установке в роторе ножевых и зубчатых рабочих органов, а в рабочей камере чередующихся противорежущих пакетов и зубчатых дек, корм интенсивно измельчается вдоль и поперек волокон. При качественном предварительном измельчении всех исходных компонентов кормосмеси, подаваемых в смеситель, все пакеты противорезов заменяют зубчатыми деками.

При переводе измельчителя-смесителя из режима измельчения на режим смешивания его комплектуют шестью деками. На роторе ставят четыре укороченных ножа (1-й ряд), два длинных (3-й ряд) и два зубчатых (4-й ряд).

Ножи противорезов отводят из рабочей зоны, не снимая их.

Степень измельчения и интенсивность смешивания корма в рабочей камере регулируют тремя способами: шибером, установленным в нижней части рабочей камеры перед швырялкой; подбором числа противорежущих элементов и зубчатых дек; подбором числа ножей и молотков.

В зависимости от вида корма и его физических свойств возможны следующие варианты установки пакетов противорезов и зубчатых дек: шесть зубчатых дек, смещенных одна относительно другой на 60°, по три пакета противорезов и зубчатых дек (устанавливают поочередно); шесть пакетов противорезов, смещенных один относительно другого на 60°.

Обкатка машины новой и после ремонта необходима для приработки трущихся поверхностей новых деталей и определения качества сборки. Машину обкатывают без нагрузки и под нагрузкой, проверяя работоспособность смонтированной машины и соответствие выходных параметров их техническим условиям.

Техническое обслуживание (ежедневное и периодическое). Ежедневно проверяют состояние крепления болтовых соединений, скребков цепи транспортёров, состояние и регулировку рабочих органов машины, натяжение ременных передач. После окончания работы очищают машину от остатков корма и грязи.

Регулярно через 240 ч работы выполняют операции первого технического обслуживания: крепят заземляющий провод к болту заземления, проверяют, сопротивление контура повторного заземления и сопротивление изоляции электродвигателей.

Через 480 ч работы выполняют операции второго технического обслуживания: смазывают подшипники вала ротора, подшипники ведомого и ведущего валов транспортеров. Цепные передачи привода выгрузного транспортера, мотор-редуктор и подшипники электродвигателя смазывают через 1200 часов.

Техническая характеристика ИСК-3А

Производительность в час основного времени, т:  
измельчение соломы:  
влажностью 20 % 4,5
влажностью 40 % 6,0
смешивание с доизмельчением
смешивание
Степень измельчения соломы, %:  
количество частиц по массе длиной до 50 мм
длиной до 100 мм
расщепление вдоль волокон
Равномерность смешивания кормов, %
Габаритные размеры, мм 7120x1800x3700
Масса, кг

Отчет о работе.

1. Вычертить принципиально-технологическую схему измельчителя-смесителя ИСК-3А.

2. Привести основные технические данные измельчителя-смесителя.

3. Описать технологические регулировки измельчителя-смесителя и дать оценку его технического состояния.

Контрольные вопросы и задания.

1. Расскажите о технологическом процессе работы измельчителя-смесителя.

2. Как устроена рабочая камера измельчителя-смесителя?

3. Как нужно настроить машину для работы в режимах измельчения и смешивания?

4. Перечислите основные операции ежедневного и периодического технического обслуживания измельчителя-смесителя.

5. Приведите основные правила безопасности труда.

Работа 2

Page 14

Цель работы. Изучение устройства и работы измельчителя кормов ИКВ-5А «Волгарь-5», частичная разборка-сборка, регулировки, подготовка к работе и техническое обслуживание машины.

Оборудование, инструмент и наглядные пособия. Измельчитель кормов ИКВ-5А «Волгарь-5», набор слесарного инструмента, плакаты, учебные пособия, инструкционно-технологическая карта.

Содержание работы.

1. Изучить устройство и работу измельчителя кормов ИКВ-5А «Волгарь-5» и его основных сборочных единиц.

2. Провести частичную его разборку-сборку и выполнить регулировочные операции.

3. Подготовить к работе и включить в работу измельчитель кормов ИКВ-5А «Волгарь-5», выполнить операции технического обслуживания.

4. Составить и сдать отчет о проделанной работе (принципиально-технологическая схема, техническая характеристика измельчителя кормов ИКВ-5А «Волгарь-5»).

Методические указания к работе. Стационарный измельчитель кормов ИКВ-5А «Волгарь-5» предназначен для равномерного измельчения всех видов зеленых, грубых и сочных кормов, бахчевых культур, кукурузы с початками в стадии молочно-восковой спелости, веточного корма, а также травы. Все перечисленные корма можно перерабатывать, раздельно, а также в различной смеси, в зависимости от потребностей хозяйства. В этом случае корма измельчают и одновременно перемешивают. Измельчитель может быть использован на животноводческих, птицеводческих и звероводческих фермах, а также для переработки продуктов при закладке комбинированного силоса в хранилище. Машину обслуживает один человек.

Основные сборочные единицы измельчителя ИКВ-5А «Волгарь-5» (рис. 3): рама 9, подающий транспортер 8, прессующий транспортер 3, режущий барабан 2, шнек 1, аппарат вторичного резания 10, заточное приспособление, электродвигатель 12, автомат отключения 11.

Рис. 3. Измельчитель кормов ИКВ-5А «Волгарь-5»

1 – шнек; 2 – режущий барабан; 3 – прессующий транспортер; 4 – механизм управления транспортерами; 5 – натяжное устройство цепной передачи редуктора; 6 – натяжное устройство цепной передачи подающего транспортера; 7 – нажимное устройство цепной передачи подающего транспортера; 8 – подающий транспортер; 9 – рама; 10 – аппарат вторичного измельчения; 11 – автомат отключения; 12 – электродвигатель

Рама 9 представляет собой сварную конструкцию из листовой стали прокатных профилей. На ней смонтированы все сборочные единицы машины. В передней части к раме на петлях крепится крышка с фиксатором, обеспечивающая доступ к режущему барабану 2 и шнеку 1. На крышке установлено заточное приспособление. Крышки сверху и с левой стороны измельчителя обеспечивают свободный доступ к нажимному (уплотняющему) транспортеру 3, аппарату вторичного измельчения 10 и автомату отключения 11.

Подающий транспортер 8 состоит из рамы, ведущего и ведомого валов. Рама транспортера крепится к корпусу четырьмя болтами. На ведомом и ведущем валах установлены по две тяговые звездочки для привода цепи планчатого транспортера.

Транспортер 3 состоит из сварной рамы, ведущего вала с двумя тяговыми и одной приводной звездочками и ролика. На ведущем валу транспортера закреплены лыжи, вторая сторона которых закреплена на оси ведомых звездочек. Подающий и нажимной транспортеры предназначены для приема и подачи перерабатываемого продукта к режущему барабану.

Аппарат первичного измельчения предназначен для предварительной резки кормов и состоит из режущего барабана 2 и противорежущей пластины. Режущий барабан представляет собой трубчатый вал с двумя насаженными дисками, к которым крепятся шесть спиральных ножей. Вал режущего аппарата вращается в подшипниках, запрессованных в специальные корпуса. Овальные отверстия в уголках опор корпуса измельчителя позволяют перемещать режущий барабан с подшипниками, что обеспечивает регулирование зазора между лезвием ножей барабана и противорежущей пластиной в пределах 0,5...1 мм. Противорежущая пластина крепится жестко на раме транспортера.

Аппарат вторичного измельчения 10 предназначен для окончательного измельчения кормов. Он состоит из вала с питающим шнеком 1, подвижных и неподвижных ножей. Подвижные ножи закреплены на шлицевой втулке, а неподвижные прикреплены планками к корпусу измельчителя. Зазор между подвижными и неподвижными ножами обеспечивается распорными кольцами. Он должен быть не более 0,5 мм. Равномерность зазора по длине ножей, регулируют четырьмя регулировочными болтами, ввернутыми в стойки планок корпуса. На одном конце вала на подшипнике установлен шкив, передающий вращение от электродвигателя на вал шнека через поводок, жестко насаженный на вал, и срезную шпильку, а на втором – автомат отключения.

Автомат отключения (рис. 4) электродвигателя 12 представляет собой замковое устройство, сблокированное с путевым выключателем, установленным на нижней крышке корпуса аппарата вторичного резания.

Состоит из двух поводков 1, 2, один из которых закреплен на валу шнека, а второй – на шлицевой втулке штуцера 7, в котором установлен замок 8. Внутри замка установлены, пружина 6, шайба 4, шпилька 5. В рабочем положении пружина полностью сжата и палец 3 рычага замка входит в отверстие поводка 1 и фиксируется зубом поводка 2. Поводки жестко соединены между собой срезной шпилькой 9.

Рис. 4. Автомат отключения электродвигателя

Page 15

а – до срабатывания; б – после срабатывания; I и 2 – поводки; 3 – палец; 4 – шайба; 5 – шпилька; 6 – пружина; 7 – штуцер; 8 – замок; 9 – шпилька; 10 – путевой выключатель.

При попадании твердых предметов (камней, металла) в аппарат вторичного измельчения срезная шпилька 9 срезается, зуб поводка 2 выходит из зацепления с пальцем замка, замок отбрасывается пружиной 6, нажимает кнопку 10 путевого выключателя, находящегося в цепи катушки магнитного пускателя, который отключает электродвигатель от сети. После аварийной остановки рабочих органов выключают общий рубильник, открывают крышку корпуса, очищают аппарат вторичного измельчения от посторонних предметов и остатков корма, устанавливают замок в рабочее положение и забивают новую срезную шпильку.

Заточное приспособление предназначено для заточки ножей первичной и вторичной ступеней измельчителя и состоит из сварного корпуса, смонтированного на передней откидывающейся крышке измельчителя, двух заточных головок и заслонки. В головку для заточки ножей барабана первой ступени Измельчителя вводят каретка, обойма с наждачным сегментом и тягой, регулирующий штурвал с защелкой.

Ножи аппарата первичного измельчения затачивают следующим образом. Включают измельчитель в работу и вынимают заслонку из крышки. Прижимая пальцем защелку, вращают штурвал против часовой стрелки. Подводя каретку с наждачным сегментом к режущим кромкам ножей до касания и, перемещая возвратно-поступательно сегмент в каретке за тягу, затачивают ножи. После заточки отводят каретку в крайнее заднее положение, отпускают защелку, отключают измельчитель и ставят заслонку на место. Головка для заточки ножей второй ступени состоит из опоры шпинделя и шлифовального круга с фрикционным кольцом, через которое вращение от шкива вала первой ступени измельчения передается на шлифовальный круг.

Для заточки ножей аппарата вторичного измельчения их снимают и затачивают при включенном измельчителе.

В комплект электрооборудования измельчителя входят распределительный шкаф с автоматическим выключателем, магнитный пускатель, клеммная коробка и концевой выключатель. Распределительный шкаф и магнитный пускатель крепятся на стенке помещения. Клеммная коробка, в которую встроена кнопочная станция и концевой выключатель, закреплена на машине.

Привод рабочих органов осуществляется от электродвигателя. Вращение на шкивы измельчающих аппаратов передается клиновыми ремнями от шкива электродвигателя. Нажимной и подающий транспортеры приводятся в действие от вала измельчающего аппарата первой ступени через цепную передачу и редуктор. Подавальщик с места переключает подающий и уплотняющий транспортеры (вперед, назад, стоп) при помощи рукоятки управления, системы рычагов и редуктора. Фрикционная муфта, установленная на ведущем валу редуктора, отключает при перегрузках подающий и уплотняющий транспортеры. Приводные ремни при проскальзывании натягивают перемещением электродвигателя в направляющих пазах.

Технологический процесс (рис. 5). Подготовленный к измельчению корм укладывают ровным слоем на подающий транспортер 9, откуда он, подпрессованный транспортером 8, направляется к режущему барабану 7 первой ступени резания, где происходит предварительное измельчение до фракций 20...80 мм.

Рис. 5. Принципиально-технологическая схема

измельчителя ИКВ-5А «Волгарь-5»

1 – приямок; 2 – транспортер загрузки измельченного корма; 3 – аппарат вторичного резания; 4 – нижнее окно корпуса; 5 – шнек; 6 – заточное устройство; 7 – режущий барабан; 8 – прессующий транспортер; 9 – подающий

транспортер; 10 – электродвигатель.

Измельченная масса направляется шнеком 5 к аппарату вторичного резания 3, где корм подвижными и неподвижными ножами измельчается до фракций 2...10 мм. Измельченный корм выбрасывается через нижнее окно корпуса 4. Для удобства выгрузки кормов из-под окна корпуса рекомендуется устроить приямок 1 с транспортером загрузки измельченного корма 2.

Регулировки. Степень измельчения регулируют в зависимости от того, для каких животных предназначен корм.

Для свиней корм измельчают и перемешивают с помощью аппаратов первичного и вторичного резания. В этом случае лезвие первого подвижного ножа устанавливают по отношению к концу отогнутого витка шнека под углом 54° (рис. 6).

Рис. 6. Регулировка степени измельчения:

I – конец витка шнека; II – кромка лезвия ножа; III – направление вращения

Для птицы требуется наиболее мелко измельченный корм. Этого достигают путем приближения лезвия первого подвижного ножа к концу отогнутого витка шнека. Угол между концом отогнутого витка шнека и лезвием первого подвижного ножа должен быть 9° в направлении вращения ведущего вала.

В обоих случаях все последующие подвижные ножи устанавливают по спирали через 36° (или через четыре шлица) против направления вращения.

Для крупного рогатого скота допускается большая длина резки. В этом случае оставляют две пары ножей (подвижных и неподвижных) со стороны опоры и один подвижный последний нож, устанавливая между ними распорную втулку для зажима пакета ножей (длина втулки – 107 мм; наружный диаметр – 140 мм; внутренний диаметр – 125 мм).

Зазор аппарата первичного резания регулируют после каждой переточки ножей и противорежущей пластины. Для регулирования зазора нужно: расшплинтовать корончатые гайки, ослабить крепление корпусов подшипников режущего барабана и переместить режущий барабан к противорежущей пластине; установив зазор 0;5..1 мм, закрепить корпуса подшипников и зашплинтовать корончатые гайки.

Зазор аппарата вторичного резания регулируют при каждой переточке ножей, при замене сломанных ножей, а также при регулировке степени измельчения. После установки ножей гайку затягивают до отказа и законтривают шайбой. Четырьмя регулировочными болтами регулируют равномерность зазора между шестью первыми от, опоры шнека подвижными и неподвижными ножами в пределах 0,05...0,65 мм, а между последними тремя подвижными и неподвижными ножами – 0,05...0,7 мм. Зазор проверяют щупом.

Провернув вручную вал шнека за шкив, убеждаются в легкости вращения. После остановки и регулировки ножей в случае наблюдения повышенного уровня шума во время работы уменьшают регулировочными болтами величину зазора между ножами до минимально рекомендуемой величины.

Для подготовки к работе необходимо; снять защитные ограждения; проверить крепления электродвигателя, редуктора, корпусов подшипников режущего барабана, натяжение ремней и цепей, наличие смазки в редукторе; открыть крышки корпуса и убедиться в отсутствии посторонних предметов в рабочих органах измельчителя и на подающем транспортере. Затем, поставив рычаг включения транспортеров в положение «вперед», прокрутить рабочие органы вручную за шкив вала аппарата вторичного резания. Все рабочие органы должны вращаться свободно. Убедившись в исправности машины, закрыть крышку корпуса, установить и закрепить ограждения, поставить рычаг включения транспортеров в нейтральное положение «стоп», включить электродвигатель на 3...5 мин с отключенным транспортером, после чего перевести рычаг в положение «вперед» и включить транспортеры. Загружать корм ровным слоем на подающий транспортер.

Техническое обслуживание (ежедневное и периодиче­ское). Ежедневно по окончании работы прокручивают машину вхолостую в течение 2...3 мин. После остановки машины, открыв кожухи и крышки, очищают рабочие органы от остатков корма. При переработке рыбы и хвои перед отключением промывают все рабочие органы машины горячей водой. Ежедневно перед началом работы измельчителя проверяют крепление рабочих органов и кожухов, крепление вращающихся частей.

Регулярно через 30 ч работы смазывают подшипники скольжения. С завода редуктор отгружают заправленным трансмиссионным автотракторным маслом. После обкатки в хозяйстве масло заменяют, а потом регулярно меняют масло через 150 ч работы редуктора. Один раз в неделю все приводные роликовые цепи смазывают автотракторным маслом АК-15. Один раз в год разбирают редуктор, проверяют зубчатые зацепления и уплотнения. В процессе работы не реже двух раз в месяц проверяют уровень масла в редукторе и при необходимости доливают его.

Page 16

Цель работы. Изучение устройства и работы измельчителя-камнеуловителя ИКМ-5, частичная разборка-сборка, регулировки.

Оборудование, инструмент и наглядные пособия. Измельчитель-камнеуловитель ИКМ-5, набор слесарного инструмента, плакаты, учебные пособия, инструкционно-техническая карта.

Содержание работы.

1. Изучить устройство и работу измельчителя-камнеуловителя ИКМ-5 и его основ­ных сборочных единиц.

2. Произвести частичную разборку-сборку измельчителя-камнеуловителя и выполнить операции технического обслуживания.

3. Включить в работу измельчитель-камнеуловитель и дать оценку его технического состояния.

4. Составить и сдать отчет о проделанной работе.

Методические указания к работе. Стационарный измельчитель-камнеуловитель ИКМ-5 предназначен для мойки, камнеулавливания и измельчения корнеклубнеплодов. Измельчитель-камнеуловитель ИКМ-5 обеспечивает возможность использования его:

а) как обычной мойки картофеля с камнеуловителем;

б) как агрегата, выполняющего мойку, камнеулавливание и измельчение корнеклубнеплодов на частотой величиной до 10 мм (для свиней) и ломтики толщиной до 15мм (для крупного рогатого скота).

Измельчитель ИКМ-5 применяют в поточных технологических линиях кормоцехов в комплекте с транспортером ТК-5,0 или ТК-5.0Б. Возможна эксплуатация измельчителя как самостоятельной машины с ручной загрузкой, однако при этом ее технико-экономические показатели будут занижены, а также ухудшены условия труда. Машину обслуживает один человек.

Измельчитель-камнеуловитель ИКМ-5 (рис. 7) состоит из следующих основных сборочных единиц: ванны 2, вертикального шнека 8, измельчителя 3, скребкового транспортера для выгрузки камней 11, электрооборудования и привода.

Рис. 7. Измельчитель-камнеуловитель ИКМ-5:

I – шкаф управления; 2 – ванна; 3 – измельчитель; 4 – крышка; 5 – электродвигатель; 6 – патрубок; 7 – корпус; 8 – шнек; 9 – электродвигатель; 10 – кожух; 11 – транспортер; 12 – кожух транспортера; 13 — люк; 14 – клапан; 15 – крылач; 16 – рама.

Опорой ванны сварной конструкции служит рама из уголков. Верхняя часть ванны закрыта листом, на котором крепится корпус шнека.

Корпус шнека 7 представляет собой цилиндр с приваренными к нему лапами для его крепления, кронштейнами для установки электродвигателей 5 и водоподводящими трубами, которые одновременно служат для строповки машины.

Шнек 8 изготовлен из трубы, винтовой спирали и двух цапф. Нижняя цапфа вращается в подшипнике скольжения, а верхняя – подшипниках качения.

Привод шнека осуществляется от электродвигателя с помощью клиноременной передачи.

Измельчитель 3 состоит из литого корпуса и двух дисков. На верхнем диске устанавливаются два горизонтальных ножа, а на нижнем – четыре вертикальных. Оба диска установлены на валу электродвигателя и закреплены болтом со спиральной головкой.

Поворотная крышка 4 переходника, соединяющего шнек с измельчителем, в случае забивания измельчителя корнеклубнеплодами отклоняется и предохраняет шнек от поломок.

Скребковый транспортер предназначен для выгрузки из ванны камней, песка и грязи. Он состоит из кожуха 12, откидного кожуха 10, качающегося транспортера с шестью скребками и привода. На кожухе 12 установлен люк с клапаном 14 для очистки и слива воды из ванны. Привод транспортера состоит из электродвигателя, расположенного на кронштейне ванны, и цепной передачи. В ведомой звездочке вмонтирован срезной штифт, предохраняющий привод транспортера от перегрузок.

Электрооборудование измельчителя питается от сети переменного тока напряжением 380/220 В. В состав электрооборудования входят: шкаф управления, клеммная коробка, электродвигатели, конечный выключатель и устройство защитного отключения ЗОУП-25. Шкаф управления сварной конструкции пылеводозащищенного исполнения. В нем установлены аппараты для пуска и защиты электродвигателей от токов короткого замыкания, тепловой и нулевой защиты и переключения двухскоростного электродвигателя на разное число оборотов.

Клеммная коробка с двумя клеммниками установлена на корпусе ванны. Конечный выключатель установлен на горловине корпуса шнека и предназначен для отключения электродвигателя при открывании крышки измельчителя.

У измельчителя-камнеуловителя ИКМ-5 три рабочих органа: шнек 8, измельчитель 3 и скребковый транспортер 11 (рис. 7). Каждый рабочий орган имеет индивидуальный привод от электродвигателя. Управление машиной осуществляется с помощью электроаппаратуры, помещенной в шкафу 1, и устройства защитного отключения, которые устанавливаются на стенке помещения.

Технологический процесс. Схема технологического процесса показана на рисунке 8. Перед началом работы ванну 12 наполняют водой. Необходимый уровень воды в ванне поддерживается сливным патрубком, расположенным на кожухе транспортера 2. Вращательное движение воды в ванне создает крылач 13, закрепленный на валу шнека.

Корнеклубнеплоды, загружаемые в ванну, под действием вращающегося потока воды находятся во взвешенном состоянии и, подхватываемые шнеком, направляются к измельчителю. Частично отмытые корнеклубнеплоды в ванне дополнительно отмываются струей воды в корпусе шнека.

Камни и другие тяжелые предметы опускаются на дно ванны и отбрасываются крылачом в выгрузной транспортер.

В измельчителе корнеклубнеплоды на верхнем диске измельчаются горизонтальными ножами и поступают на нижний диск, где окончательно измельчаются вертикальными ножами. Для получения мелкого измельчения (для свиней) измельченный продукт проходит дополнительно через деку.

Измельченный продукт выгружается через лоток с помощью лопаток нижнего диска.

Рис. 8. Принципиально-технологическая схема

измельчителя-камнеуловителя ИКМ-5:

1 – рама; 2 – транспортер камнеудалитель; 3, 6, 10 – электродвигатели; 4 – гребенка подвода воды; 5 – кожух; 7 – выбрасыватель; 8 – крышка измельчителя; 9 – измельчитель; 11 – шнековая мойка; 12 – ванна; 13 – крылач; 14 – люк; 15 – вентиль.

Регулировки. Для мелкого измельчения корнеклубнеплодов необходимо установить переключатель на шкафу управления в положение 1000 мин -–1, поставить все ножи и деку. Для крупного измельчения корнеклубнеплодов необходимо установить переключатель на шкафу управления в положение 500 мин -–1, снять часть ножей и деку. При мойке корнеклубнеплодов без измельчения необходимо снять деку и верхний диск измельчителя, а на его место установить стопор нижнего диска. Частота вращения должна быть 500 мин -–1.

Подготовка к работе. Вначале проверяют правильность подключения проводов, крепления болтовых соединений, вращающихся деталей и сборочных единиц. Особое внимание обращают на крепление ножевого диска, который должен вращаться без заеданий и стуков при повороте его от руки. Проверяют натяжение цепей транспортера и приводных ремней шнека. Стрела провисания одной ветви цепи должна быть 12...15 мм. Натяжение приводных ремней считается правильным, если, при приложении усилия 30 Н посередине ветви образуется прогиб не более 15...20 мм. Проверяют наличие смазки верхнего подшипника шнека путем шприцевания и щупом в мотор-редукторе. Проводят обкатку измельчителя при налитой в ванне воде в продолжение 30 мин, так как нижний подшипник шнека и транспортера обязательно должен работать в водяной среде.

Порядок работы на измельчителе: включают электродвигатель шнека только при включенном электродвигателе измельчителя, что обеспечивает подачу корнеклубнеплодов на вращающийся режущий диск и не допускает запрессовки в момент пуска. Включают и выключают скребковый транспортер независимо от работы других механизмов. Нормальная работа режущих дисков обеспечивается при непрерывной подаче корнеклубнеплодов.

При переработке мерзлой свеклы необходимо уменьшить загрузку, доводя производительность до 5,0 т/ч. При мойке картофеля без измельчения необходимо снять деку и верхний диск измельчителя. При этом электродвигатель должен работать в режиме с частотой вращения 500 мин -–1.

Техническое обслуживание (ежедневное и периодическое). При ежедневном техническом обслуживании шлангом для гидросмыва и лопатой очищают машину от остатков корнеклубнеплодов, грязи и камней. Проверяют и при необходимости затягивают резьбовые соединения, особое внимание обращают на крепление ножей и режущих дисков. Проверяют работу скребкового транспортера и при необходимости регулируют натяжение. Скребки не должны касаться боковых стенок кожуха. Проверяют надежность подключения заземляющего провода к болту заземления.

При периодическом техническом обслуживании, которое проводят через 50 ч работы, выполняют операции ежедневного технического обслуживания и, кроме того, смазывают детали машины в соответствии с таблицей и схемой смазки. Перед смазкой необходимо удалить грязь и пыль с масленок, пробок и с поверхности вокруг них, пользоваться чистыми заправочными средствами и применять необходимые сорте масел. Проверяют крепление скребков транспортера и при необходимости затягивают. Скребки должны быть плотно притянуты к лапке звена. Осматривают предохранительный штифт на приводе транспортера и в случае надреза заменяют. Приводная звездочка должна быть плотно закреплена на валу. Мегомметром проверяют состояние изоляции электродвигателей. Сопротивление изоляции должно быть не ниже 0,5 МОм. В случае необходимости сушат электродвигатели. Измерителем заземления проверяют сопротивление повторного контура заземления. Сопротивление должно быть не более 10 Ом.

Page 17

На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим, поскольку набережные являются одним из доминирующих элементов городской среды.

Наиболее капитальным и обладающим высокими архитектурными свойствами является вертикальный тип в виде набережной стенки (рис. 39, а). Высокая стоимость такого типа берегоукрепления ограничивает его применение лишь условиями размещения в пределах плотной застройки и особой технической необходимости. Поэтому вертикальные стенки проектируют в центральных районах крупных городов и на особо ответственных участках реки. В остальных случаях устраивают откосные берегоукрепления, которые по сравнению с предыдущим типом отличаются простотой и невысокой стоимостью (рис. 39, б).

Рис. 39

Поперечный профиль береговой полосы проектируют по различным схемам в зависимости от ее градостроительного использования, рельефа местности и особенностей водоема.

По архитектурным требованиям высоту набережной ограничивают 5-6 м, поэтому, когда по условиям береговой полосы или уровенного режима необходима более высокая стенка, переходят на двухъярусный поперечный профиль (рис. 39, в). Городские набережные ограждают парапетами, железобетонными или металлическими решетками. Высоту ограждений принимают в пределах 0,9-1 м. Поверхность набережных облицовывают из камней морозостойких и невыветривающихся пород, но иногда оставляют в бетоне, учитывая при этом требования эстетики берегоукрепления.

Конструкции набережных

Конструкции набережных — стенок можно разделить на два основных типа: гравитационные и свайные. Набережные первого типа проектируют в виде массивной подпорной стенки или уголковой, более легкой конструкции. По экономическим соображениям область их применения ограничена основаниями, сложенными из прочных пород, затрудняющих внедрение свай.

Свайные набережные располагают на любых основаниях, кроме скальных, но чаще их используют в грунтах песчаных или глинистых. Описываемые конструкции состоят из тонких подпорных стенок (больверков) и свайных ростверков. Безанкерные больверки являются простейшим типом вертикального крепления берега. Свободная их высота (расстояние от дна водоема до верха стенки) обычно не превышает 3-4 м. При использовании в конструкции экранирующих и разгружающих устройств свободная высота стенки на благоприятных грунтах основания может быть повышена до 4,5-6 м.

При такой высоте рационально использовать заанкерованные конструкции больверков, что объясняется возможностью появления деформации в безанкерные стенках, особенно при размещении рядом с ними транспортных путей.

Низкие свайные ростверки широко используют в конструкциях городских набережных на реках и каналах, обнажающихся при низких уровнях водоема практически по всей высоте. Свободная высота набережных такого типа не превышает 5 м.

Рис. 40. Конструкции берегоукрепления:

1 — свайное поле; 2 — ростверк; 3 — вертикальная навесная панель; 4 — глухой парапет; 5 — монолитная стенка; 6 — дренаж; 7 — дренажный выпуск; 8 — каменная отмостка; 9 —песок; 10 — облицовка из камня; 11 — сборная стенка; 12 — илистые отложения; 13 — скальный грунт

Высокие свайные ростверки имеют много конструктивных разновидностей. Одна из наиболее распространенных показана на рис. 40, а. Ростверк, расположенный над горизонтом межени, устраивают без предварительного водоотлива, что объясняет широкое использование этой конструкции в городских набережных. Вертикальные усилия воспринимают сваи и шпунт, а горизонтальные — вертикальный навесной блок, являющийся одновременно ограждающей конструкцией.

Гравитационные стенки на естественном основании, изображенные на (рис. 40, б, в), устраивают, как правило, предусматривая предварительное возведение оградительных перемычек и водоотлива, что необходимо для выполнения строительных работ. В зоне водохранилищ такие стенки возводят до его заполнения водой или в период «сработки» уровня. Конструкции массивных монолитных бетонных и выложенных из камня (рис. 40, г) стенок применяют редко из-за того, что они не удовлетворяют современным требованиям индустриальности, но эти конструкции издавна использовали в портовом строительстве, речных и морских берегоукреплениях. Волноотбойные стенки устраивают обычно из массивного бетона с защищаемой от истирания лицевой гранью. Наружное очертание стенки принимают закругленной формы, обеспечивающей отбрасывание волновых всплесков в сторону моря.

Гравитационные стенки уголкового типа отличаются легкостью конструкции по сравнению с массивными (рис. 40, д и e). Их удерживают в устойчивом состоянии преимущественно за счет массы грунтовой засыпки, прижимающей горизонтальную часть уголка.

Конструкцию берегоукрепления рассчитывают на устойчивость и прочность, учитывая постоянные и временные нагрузки и воздействия, руководствуясь рекомендациями СНиПа.

Рассмотренные выше конструкции свайных и гравитационных набережных-стенок естественно не исчерпывают все многообразие существующих, что объясняется разнообразием конкретных условий проектирования. Вместе с тем, они дают представление о принципиальных конструктивных решениях стенок, подробные сведения о которых изложены в специальной литературе .

Page 18

Поверхность территории надлежит повышать:

- для освоения под застройку затопленных, временно затапливаемых и подтопленных территорий;

- для использования земель под сельскохозяйственное производство;

- для благоустройства прибрежной полосы водохранилищ и других водных объектов.

Варианты искусственного повышения поверхности территории необходимо выбирать на основе анализа следующих характеристик защищаемой территории: почвенно-геологических, зонально-климатических и антропогенных; функционально-планировочных, социальных, экологических и других, предъявляемых к территориям под застройку.

Проект вертикальной планировки территории с подсыпкой грунта следует разрабатывать с учетом плотности застройки территории, степени выполнения ранее предусмотренных планировочных работ, классов защищаемых сооружений, изменений гидрологического режима рек и водоемов, расположенных на защищаемой территории с учетом прогнозируемого подъема уровня грунтовых вод.

При защите территории от затопления подсыпкой отметку бровки берегового откоса территории следует принимать не менее чем на 0,5 м выше расчетного уровня воды в водном объекте с учетом расчетной высоты волны и ее наката.

Отвод поверхностного стока с защищенной территории следует осуществлять в водоемы, водотоки, овраги, в общегородские канализационные или ливневые системы.

При осуществлении искусственного повышения поверхности территории необходимо обеспечивать условия естественного дренирования подземных вод. По тальвегам засыпаемых или замываемых оврагов и балок следует прокладывать дренажи, а постоянные водотоки заключать в коллекторы с сопутствующими дренами.

Осуществлять работы по искусственному повышению поверхности территории путем отсыпки грунта или намыва.

Проект намыва грунтов разрабатывается организацией, проектирующей возведение сооружений из грунтовых материалов способами гидромеханизации на основе проекта инженерной подготовки территории к строительству;

- генерального плана города или плана детальной планировки микрорайона;

- генерального плана строительства промышленного объекта или проекта застройки территории отдельными сооружениями.

При расположении проектируемой намывной территории на берегах рек, естественных водоемов и водохранилищ или в их акватории отметки поверхности намываемого массива устанавливаются, исходя из требования защиты территории от затопления и подтопления при максимальных расчетных уровнях высоких вод.

Превышение отметок поверхности намывной территории над этими уровнями (с учетом высоты волны и ее нагона в водохранилище) должно быть не менее 1 м. При этом дополнительно следует учитывать удаленность зданий и сооружений от береговой линии; характер подземных сооружений и коммуникаций; минимально допустимую глубину нахождения подземных вод под сооружениями, а также наличие системы инженерной защиты (дамбы, дренажи и др.), предусмотренной проектом.

Для намыва, как правило, следует использовать естественные песчаные грунты. Вместе с тем с учетом назначения и зональности намыва, а также местными природно-техническими условиями, допускается частичное использование грунтов иного вида (крупнообломочных, пылеватых и глинистых, в том числе из вскрыши карьеров, и техногенно-образованных - золы, шлаки и др.), если они отвечают требованиям, предъявляемым к данной категории намывной территории.

В проекте, а также в выпускаемых на его основе Технических условиях на ведение намыва, должна быть учтена специфическая способность намывных грунтов уплотняться и упрочняться во времени.

Основные проектные решения по намыву должны быть в максимальной мере взаимоувязаны с инженерно-геологическим районированием территории; генеральным планом ее застройки; расчетными параметрами режима водохранилищ и рек, а также намечаемой системой мероприятий по инженерной защите территории от затопления, подтопления и опасных геологических процессов, предусмотренных проектом ее строительного освоения.

При наличии соответствующих указаний Технического задания в проекте прорабатываются следующие решения:

- намыв площадного дренажа из крупнообломочных грунтов или крупных и средней крупности песков на участках распространения слабофильтрующих грунтов во избежание образования техногенной верховодки в массиве (толще) намывных грунтов и для ускорения процесса их консолидации;

- намыв избыточных толщ песков до проектной отметки намывной территории для дополнительной консолидации подстилающих, сильносжимаемых глинистых и биогенных грунтов;

- устройство средствами гидромеханизации дренажных прорезей с замывом их хорошо дренирующим материалом для ускорения консолидации сильносжимаемых грунтов и уменьшения опасности подтопления намывной территории;

- экранирование подстилающих грунтов, загрязненных промстоками, путем намыва на них слоя глинистых грунтов;

- намыв противосуффозионного экрана из пылевато-глинистых грунтов при наличии поверхностных форм карстово-суффозионных проявлений для их исключения после создания намывной территории, а также замыв карстовых воронок и понижений в рельефе;

- удаление в необходимых случаях торфов и слабых грунтов, а также илов на дне замываемых водоемов для исключения значительных и длительных осадок намывного основания; неблагоприятных условий формирования свойств намывных грунтов, а также для исключения затруднений в их искусственном уплотнении, особенно в тех случаях, когда проектом не предусматривается прорезка этих грунтов сваями.

Намыв грунтов в районах распространения закарстованных грунтов на просадочные грунты (в грунтовых условиях 1-го типа просадочности), а также на набухающие, засоленные и загрязненные промстоками грунты допускается только при соответствующем обосновании.

При использовании песков, как наиболее распространенного грунтового материала для намыва, необходимо определять следующий комплекс характеристик:

компонентный состав (минеральный, химический, биологический);

гранулометрический состав;

степень гранулометрической неоднородности песчаных грунтов (с определением комплекса показателей, регламентируемых нормативными документами для намывных грунтов);

- морфологию частиц песчаной размерности (угловатость, сферичность, шероховатость или общую обработанность);

- предельные плотности сложения (минимальную и максимальную плотности сухого песка);

- показатели влагоемкости (максимальную, молекулярную, капиллярную);

- оптимальную влажность уплотнения;

- коэффициент фильтрации и степень фильтрационной анизотропии, определяемой при фактической плотности намытых грунтов, с учетом изменения ее во времени.

Page 19

Гидромеханическую разработку грунта применяют при возведении гидротехнических сооружений, устройстве больших водоемов, дорожных насыпей и выемок, а также при намыве территорий под застройку в прибрежных зонах водных акваторий и на заболоченных участках в районах нового освоения. Этот способ предусматривает полную механизацию всех процессов разработки, транспортировки и укладки грунта в сооружения, снижая стоимость и трудоемкость работ по сравнению с применением землеройных и землеройно-транспортных машин. Однако эффект получают лишь при больших объемах земляных работ, так как требуется прокладка трубопроводов, устройство эстакад и других сооружений.

Разработка грунта гидромониторами основана на разрушении грунта струей воды, вытекающей из насадки под давлением 2,5...15 МПа. Размытый грунт, смешиваясь с водой, образует полужидкую массу, называемую пульпой. Пульпу собирают в специальные углубления — зумпфы, откуда перекачивают грунтовым насосом по трубам к месту укладки.

После отфильтрования воды грунт осаждается, а вода может быть возвращена в водоем или использована повторно. В случае благоприятного рельефа местности пульпу транспортируют самотеком по специальным лоткам.

Плотный грунт размывают гидромонитором преимущественно встречным забоем (рис. 42, а), а рыхлый несвязанный грунт — попутным забоем (рис. 42, б).

Рис. 42 Схема разработки и транспортировки грунта гидромеханическим способом

а — гидромонитором встречным забоем транспортировкой пульпы землесосом; б — то же.попутным забоем; в — плавучий земснарядом; 1 – землесос; кол (зумпф); 3 – гидромонитор; 4- забой; 5 – всасывающая труба; 6 — баржа с насосной установкой; 7- пульпопровод; 8- грунтовое обвалование. 9 – площадка намыва.

Разработка грунта встречным забоем более производительна, однако расположение гидромонитора в мокрой среде затрудняет его эксплуатацию.

Разработка грунта землесосными снарядами.Земснаряд представляет собой самоходное или несамоходное судно, на котором смонтировано оборудование по забору грунта из подводного забоя и его транспортировке к месту укладки. Грунт со дна водоема всасывают через трубу, подвешенную к специальной стреле на земснаряде (рис. 42, в). При разработке плотных грунтов трубу оборудуют специальной вращающейся рыхлительной головкой. Земснаряд с помощью плавучего пульпопровода соединяют с магистральным трубопроводом, проложенным по берегу.

Намыв грунта в сооружении осуществляют слоями по 200...250 мм, разбивая рабочую площадь в плане на отдельные карты — захватки. Перед началом намыва по контуру карты сооружают бульдозером земляной вал на высоту первого слоя пульпы и водосборный (дренажный) колодец, которые перед намывом очередного слоя наращивают.

Грунт намывают эстакадным и безэстакадным способами.

При эстакадном способе магистральный пульпопровод на участке намыва размещают на деревянной эстакаде выше будущей насыпи. При безэстакадном способе его укладывают вдоль оси возводимой насыпи по одну или обе стороны ее основания, в зависимости от ширины насыпи и рельефа местности. На пульпопроводе через каждые 200...300 мм устанавливают специальные патрубки для подачи пульпы в карту намыва.

Эстакадный способ требует значительного расхода древесины на возведение опор, но при этом отпадает необходимость в периодической перекладке выпускных патрубков и их наращивании.

Укладка грунта в насыпь намывным способом обеспечивает его необходимую плотность и, как правило, исключает искусственное уплотнение

Расположение карт намыва должно определяться инженерно-геологическим районированием подготавливаемой территории и намечаемым генпланом ее застройки (для обеспечения создания участков под застройку разными классами сооружений и учета влияния грунтовых условий естественного основания на формирование свойств намывных грунтов).

Расположение пульповодов, ограждающих дамб и дамб обвалования, водосбросных колодцев и прудов-отстойников следует принимать такими, чтобы исключить попадание зданий и сооружений I и II классов на места стыка намывных карт и в зоны прудов-отстойников.

Предпочтение следует отдавать применению безэстакадного способа намыва с послойной (0,5 - 1,0 м) укладкой грунтов при интенсивности намыва, отвечающей водоотдаче намывных грунтов, водопроницаемости (дренирующей способности) подстилающих грунтов и положению (глубины залегания) уровня подземных вод. В необходимых случаях следует предусматривать отдых карт намыва после возведения каждого яруса.

Особое внимание следует уделять недопущению укладки в намываемую толщу глинистых грунтов, существенно снижающих несущую способность подготавливаемого основания и способствующих образованию техногенной верховодки.

При соответствующем обосновании допускается проводить намыв грунтов одним слоем на всю высоту создаваемого намывного массива.

При укладке грунтов намывом в воду необходимо учитывать характерное для таких условий снижение плотности намывных грунтов с глубиной водоема - уменьшение плотности сухого песка по 0,01 г/см3 на каждый метр глубины водоема.

Технология намыва должна отвечать требованиям охраны окружающей среды: предусматривать оборотное водоснабжение, минимальный сброс отмываемых тонкодисперсных частиц в поверхностные водоемы, рекультивацию снимаемого почвенного покрова, рекультивацию карьеров, расположенных вне русла рек или водоемов, и другие мероприятия.

Page 20

Современный опыт градостроительного проектирования позволил выявить определенные тенденции в выборе основных мероприятий (таблица 15).

Таблица 15

Проектирование водооградительных сооружений включает определение основных параметров поперечного сечения дамбы и земляной насыпи, типа и конструкции одежды берегоукрепления.

Параметры водооградительных сооружений в значительной степени зависят от их высоты. Ее назначают из условий некоторого превышения гребня дамбы или бровки подсыпки над расчетным ГВВ (рис. 43.). Это превышение состоит из нескольких величин, определяемых капитальностью сооружений и особенностями ветрового режима акватории.

В зависимости от класса капитальности сооружения назначают величину запаса а, характеризующего возвышение верха сооружения над горизонтом высоких вод. Как правило, капитальность водооградительных дамб относят к III классу, поэтому величину запаса принимают не менее 0,7 м. Возвышение отметки бровки насыпи при подсыпке территории принимают не менее 0,5 м. На крупных водоемах учитывают кроме запаса α величину ветрового нагона ∆h и высоту всплеска волны hB или ее наката на откос hн .

Отметку верха водооградительных сооружений Нс определяют по двум формулам. При вертикальном берегоукреплении:

Нс = Нгвв + α + ∆h + hB,

где принятое обозначение величин см. на рис. 28, б. Подъем горизонта под влиянием ветрового нагона определяют по данным местных наблюдений, высоту волны и ее наката — по нормативным документам.

Если берегоукрепление откосное, то:

Нс = Нгвв + α + ∆h + hн,

где обозначения см. на рис. 28, а.

В тех случаях, когда водооградительные сооружения трассируют вдоль берега, сжимая русловой поток, в формулы необходимо добавить запас на возможное превышение ГВВ, вызванное уменьшением поперечного сечения реки.

Рис. 43. Поперечные профили обделки берегов сооружений защиты от затопления (на схемах а и б обозначены величины, слагающие запас высоты сооружений)

Берегозащитные сооружения, предотвращающие подмыв берегов и деформацию русла рек, проектируют на основе генеральной схемы берегоукрепления, где учтены перспективы развития населенных мест. На территориях, непосредственно используемых для градостроительных нужд, предусматривают дополнительно меры активной защиты, включающие расширение существующих и создание искусственных пляжей в комплексе с сооружениями, их удерживающими.

Формы и конструкции берегоукрепления многообразны. Они зависят от назначения проектируемой территории, высоты водоограднтельного сооружения, гидрогеологических и климатических условий района строительства, определяющих нагрузки, и воздействия на конструкцию. Принципиальные схемы поперечных профилей берегоукрепления. отражающие возможное многообразие существующих вариантов, показаны на рис. 43. Откосный и вертикальный профили обделки берега (рис. 43, а и б) являются наиболее распространенными в городских набережных.

Откосно-вертикальная схема а набережной находит применение при относительно больших глубинах в прибрежной полосе и в условиях сгона-нагона воды на устьевых участках рек (рис. 43, в). Однако по архитектурным соображениям набережные этого типа могут быть возведены и на мелководье, но тогда высоту вертикальной части набережной делают не более 2-3 м. На реках с высокими паводками и крутыми возвышенными берегами находят широкое применение набережные, выполненные по схеме г с горизонтальной площадкой или без нее.

На берегах морей, рек, каналов при амплитуде приливно-отливных и сезонных колебаний до 5-6 м берегоукрепление проектируют по (рис. 43, д), в виде криволинейного силуэта. Если прибрежные территории подвержены воздействию прибойных и разбивающихся волн, то верхнюю часть криволинейной зоны целесообразно выполнять с обратным уклоном, проектируя поперечный профиль по (рис. 43, е). Это позволяет исключить выплескивание воды на берег при отсутствии ветра.

Природоохранные мероприятия

В проекте инженерной защиты территории от затопления и подтопления следует предусматривать:

- предупреждение опасных размывов русла, берегов, а также участков сопряжения защитных сооружений с неукрепленным берегом, вызываемых стеснением водотока защитными дамбами и береговыми укреплениями ;

- сохранение вокруг оставляемых на защищаемой территории водоемов древесно-кустарниковой и луговой растительности, лесонасаждений;

- осуществление на защищаемой территории комплекса агротехнических, луголесомелиоративных и гидротехнических мероприятий по борьбе с водной эрозией;

- предупреждение загрязнения почвы, водоемов, сельскохозяйственных земель и территорий, используемых под рекреацию, возбудителями инфекционных заболеваний, отходами промышленного производства, нефтепродуктами и ядохимикатами;

- сохранение естественных условий миграции животных в границах защищаемой территории;

- сохранение или создание новых нерестилищ взамен утраченных в результате осушения пойменных озер, стариц и мелководий водохранилищ;

- предупреждение гибели и травмирования рыб на объектах инженерной защиты;

- сохранение на защищаемой территории естественных условий обитания животных;

- сохранение на защищаемой территории режима водно-болотных угодий, используемых перелетными водоплавающими птицами во время миграций.

Системы инженерной защиты следует проектировать с учетом особенностей природоохранных, санитарно-гигиенических и противопаразитарных требований для каждой природн6ой зоны, а также данных территориальных комплексных систем охраны природы.

При размещении сооружений инженерной защиты и строительной базы необходимо выбирать земли, не пригодные для сельского хозяйства, либо сельскохозяйственные угодья низкого качества. Для строительства сооружений на землях государственного лесного фонда следует выбирать не покрытые лесом площади или площади, занятые кустарниками или малоценными насаждениями.

Не допускается нарушение природных комплексов заповедников и природных систем, имеющих особую научную или культурную ценность, в том числе в пределах охранных зон вокруг заповедников.

При создании объектов инженерной защиты на сельскохозяйственных землях и застроенных территориях не должны нарушаться процессы биогеохимического круговорота, оказывающие положительное влияние на функционирование природных систем.

Санитарно-оздоровительные мероприятия необходимо проектировать с учетом перспектив развития населенных пунктов. Не следует допускать образования мелководных зон, а также зон време6нного затопления и сильного подтопления вблизи населенных пунктов.

Расстояние от водоемов до жилых и общественных зданий должно устанавливаться органами санитарно-эпидемиологической службы в каждом конкретном случае.

Все проекты инженерной защиты должны содержать оценку возможных последствий техногенных воздействий на окружающую природную среду, основывающуюся на прогнозах динамики природных процессов: геодинамических, гидрологических, гидрохимических, геотермических, биологических, возникающих в результате воздействия затопления и подтопления, а также прогнозов изменений паразитологической ситуации.

При устройстве защитных сооружений допускается применять в качестве строительных материалов грунты и отходы производства, не загрязняющие окружающую природную среду.

Выемка грунта ниже створа защитных сооружений для наращивания дамб не допускается.

Не допускается подрезка склонов, разработка карьеров местных материалов в водоохранной зоне водоемов и водотоков.

При наличии на защищаемых территориях хозяйственно-питьевых водоисточников следует составлять прогноз возможных изменений качества воды после строительства защитных сооружений для разработки водоохранных мероприятий.

В проектах строительства объектов инженерной защиты необходимо предусматривать централизованное водоснабжение и канализацию защищаемых населенных пунктов с учетом существующих гигиенических требований.

Вокруг источников хозяйственно-питьевого назначения, расположенных на защищаемой территории, надлежит создавать санитарные зоны охраны, отвечающие требованиям «Положения о порядке проектирования и эксплуатации зон санитарной охраны источников водоснабжения и водопроводов хозяйственно-питьевого назначения».

В местах пересечения сооружениями инженерной защиты (нагорными каналами, дамбами обваловывания и т.д.) путей миграции животных надлежит:

Выносить сооружения за границу путей миграции;

Выполнять откосы земляных сооружений уположенными и без крепления, обеспечивающими беспрепятственное прохождение животных;

Заменять участки каналов со скоростями течения, опасными для переправы животных, на трубопроводы..

Page 21

Характеристики процессов

Оползни

Изучение оползневых явлений, оценка устойчивости склонов и проектирование противооползневых сооружений — актуальнейшие задачи, стоящие перед отечественными и зарубежными специалистами при градостроительном освоении территорий.

Оползни, сели, обвалы наносят большой ущерб народному хозяйству, природной среде, приводят к человеческим жертвам.

Основными поражающими факторами оползней, селей и обваловявляются удары движущихся масс горных пород, а также заваливание и заливание этими массами свободного ранее пространства. В результате происходит разрушение зданий и других сооружений, скрытие толщами пород населенных пунктов, объектов экономики, сельскохозяйственных и лесных угодий, перекрытие русел рек и путепроводов, гибель людей и животных, изменение ландшафта.

Оползни, сели и обвалы па территории РФ имеют место в горных районах Северного Кавказа, Урала, Восточной Сибири, Приморья, острова Сахалин, Курильских островов, Кольского полуострова, а также по берегам крупных рек.

Часто оползни приводят к масштабным катастрофическим последствиям. Так, оползень в Италии в 1963 г. объемом 240 млн м3 накрыл 5 городов, погубив при этом 3 тыс. человек.

В 1982 г. селевой поток протяженностью 6 км, шириной до 200 м обрушился на поселки Шивея и Аренда Читинской области. В результате были разрушены дома, автомобильные мосты, 28 усадеб, размыты и занесены 500 га посевных площадей, а также погибли люди и сельскохозяйственные животные. Экономический ущерб от этого селя составил около 250 тыс. рублей.

В октябре 1963 г. на высоком берегу водохранилища Вайонт в Северной Италии произошел один из самых разрушительный оползень за всю историю Европы - объемом около 0,25 км3. Оползень сошел в водохранилище и образовал волну, которая поднялась на 260 м вверх по противоположному склону долины. Волна перехлестнула через плотину и устремилась вниз по долине. В результате было разрушено пять селений и погибло более 2000 человек.

Января 1984 г. в результате землетрясения в Гиссарском районе Такжикистана произошол оползень шириной 400 м и длиной 4,5 км. Огромные массы земли накрыли поселок Шарора. Погибли 207 человек, погребенными оказались 50 домов.

В 1989 г. оползни в Ингушетии привели к разрушениям в 82 населенных пунктах. Было повреждено 2518 домов, 44 школы, 4 детских сада, 60 объектов здравоохранения, культуры, торговли и бытового обслуживания.

Целесообразность градостроительного освоения территорий с потенциально возможными и действующими оползнями должна быть тщательно обоснована с учетом соответствующих нормативных ограничений. Обычно при планировке города по возможности стремятся не размещать здания и инженерные сооружения на территориях, непосредственно прилегающих к оползневым склонам, или удаляют их на безопасное расстояние от его бровки, предусматривая одновременно комплекс защитных мер. Вместе с тем следует учитывать, что в ряде случаев крайне нежелательно отказываться от ценных в градостроительном отношении территорий с оползневыми явлениями. Например, территорий, расположенных вдоль морских побережий или крупных рек, особенно при наличии на них существующих зданий, автомобильных дорог и других инженерных сооружений. В таких случаях оползневые территории осваивают и даже включают в селитебную зону города, предусматривая ее комплексную защиту.

При инженерной подготовке территорий с оползнями решают задачи стабилизации потенциально опасных и уже подверженных обрушению склонов. Большое значение при этом имеет своевременный прогноз возможных границ распространения оползня, потенциальной глубины и скорости смещения грунта, а также других параметров, определяющих выбор защитных сооружений, и возможность безопасного размещения застройки на прилегающей территории.

Причины образования и характеристика оползней

Оползневые процессы характерны скользящим смещением части горных пород, слагающих склон без потери контакта между смещающейся и неподвижной частями (рис. 44, а). Для возникновения и развития оползня необходимы определенные условия, среди которых основными являются крутизна и форма склона, геологическое строение пород, гидрогеологическая и гидрологическая обстановка.

Рис. 44. Схема развития оползней:1 — поверхность склона после оползня; 2 — положение склона до оползня; 3 — сметающиеся части склона — тело оползня; 4 — поверхность скольжения

При прочих равных условиях наиболее подвержены оползневым явлениям крутые склоны, имеющие выпуклую или нависающую конфигурацию, а наиболее типичными оползневыми породами являются глинистые, сопротивление сдвигу которых очень чувствительно к изменению влажности. Оползни часто образуются на участках наклонного залегания слоев с падением их в сторону склона (рис. 44, б), а также при выдавливании глин вышележащими породами (схема в).

В подавляющем большинстве случаев оползни расположены у берегов водоемов, водохранилищ и рек, мест выхода подземных вод на поверхность, где возникают условия нарушения предельного равновесия склона. Оно может быть нарушено в результате дополнительных воздействий, которые являются следствием природных процессов или деятельности человека. К ним относятся: изменение крутизны склона, воздействие грунтовых и поверхностных вод, выветривание, сотрясения, мерзлотные воздействия, вибрация, дополнительные нагрузки на склон, уничтожение на нем растительности.

Механизм этих воздействий при образовании оползневого процесса проявляется в трех направлениях. Первое — изменение внешней формы и высоты склона, приводящее к перераспределению сдвигающих и удерживающих сил на нем. Второе — изменение строения и физико-механических свойств пород. Третье — создание дополнительного давления на слои, слагающие склон.

Возникновение оползней в каждом конкретном случае может быть результатом влияния отдельных из вышеперечисленных воздействий или их сочетанием. Для выявления причин возникновения оползней и механизма разрушения склона помимо традиционных инженерно-геологических изысканий используют измерительные приборы и сигнализирующие автоматические устройства. Первые позволяют получить подробную информацию об оползневом процессе как в самом начале его возникновения, так и на стадии полного развития, а вторые — сигнализируют о внезапно возникших внешних изменениях, которые могут вызвать подвижки грунта.

При проведении комплекса инженерных мероприятий их состав определяют на основе анализа причин, вызывающих оползневой процесс, учитывая характер и скорость движения, тип слагающих пород, глубину расположения поверхности скольжения и ее форму, активность процесса и другие характеристики.

Page 22

Первый тип — асеквентные, которые развиваются обычно в однородных связных грунтах и имеют криволинейную цилиндрическую поверхность скольжения, положение которой зависит от величины сил трения и сцепления. Классический оползень с правильной круглоцилиндрической поверхностью смещения сравнительно редок, поскольку естественные склоны, как правило, неоднородны, чаще всего они имеют сложное строение. Оползни описываемого типа характерны для искусственных склонов, например в дамбах или дорожных насыпях. Движение оползня может быть прогрессирующим, т. е. первоначально сдвиг может произойти не сразу по всей поверхности смещения, а развиваться постепенно, начиная с участка локального разрушения. Если поверхность смещения у нижней границы оползня наклонена в глубь массива, то смещение оползня может остановиться, так как момент сдвигающей силы во время движения уменьшается.

Второй тип — консеквентные оползни, для которых характерно смещение по поверхности напластования, падающей вниз по склону. Поверхность смещения при этом плоская или слабоволнистая, а ее положение предопределено строением склона. Движение этого типа оползней определяется наличием структурно ослабленных поверхностей, таких, как тектонические разрывы, трещины, напластования, и изменениями в сопротивлении сдвигу различных осадочных пород или на контакте прочных коренных и рыхлых пород. В отличие от предыдущего типа консеквентный оползень может неограниченно развиваться, если поверхность его смещения достаточно крутая и более или менее постоянная сдвигающая сила превышает сопротивление сдвигу.

К третьему типу относят инсеквентные оползни, которые секут поверхность напластования и простираются глубоко в склон. Здесь поверхность смещения, как правило, имеет сложное криволинейное очертание, ее положение определяется характером грунтов, слагающих толщу, и особенностями напластования пород.

Образуются оползни в различных породах в результате их нарушения равновесия или ослабления прочности. Вызываются как естественными, так и антропогенными причинами. Естественные: увеличение крутизны склонов, подмыв их основания морскими и речными водами, сейсмические толчки. Искусственные: разрушение склонов дорожными выемками, вырубкой леса, неразумное ведение сельского хозяйства на склонах. Согласно международной статистике, до 80 % современных оползней связано с деятельностью человека.

Классификация оползней

Классифицируются оползни: по масштабам явления, скорости движения и активности, механизму процесса, мощности и месту образования.

По масштабам: крупные, средние, мелкомасштабные.

Крупные вызываются, как правило, естественными причинами и образуются вдоль склонов на сотни метров. Их толщина достигает 10-20 и более метров. Оползневое тело часто сохраняет свою монолитность.

Средние и мелкомасштабные имеют меньшие размеры и характерны для естественных факторов образования.

Масштаб часто характеризуется вовлеченной в процесс площадью: грандиозные – 400 га и более, очень крупные – 200-400 га, крупные – 100-1200 га, средние 50-100 га, мелкие – 5-50 га и очень мелкие – до 5 га.

По глубине захвата склона выделяют мелкие (поверхностные) оползни и глубокие. Поверхность скольжения мелких оползней располагается в зоне сезонных колебаний влажности и температуры, а глубоких проходит в основном ниже этой зоны.

По скорости движения: скорость движения оползней может быть очень разная.

Характеристика движения Скорость

Крайне быстрое ................................... 3 м/с

Очень быстрое .................................... 0,3 м/мин

Быстрое ............................................... 1,5 м/сут

Умеренное ........................................... 1,5 м/мес

Медленное ........................................... 1,5 м/год

Очень медленное ................................. 0,06 м/год

Крайне медленное ............................... менее 0,06 м/год

С точки зрения проведения защитных мероприятий скорость движения оползней является важнейшей их особенностью.

По скорости оползни подразделяют на два типа, принципиально отличающихся друг от друга: постепенно или мгновенно оползающие. Скорость движения постепенно оползающих может быть от быстрой до крайне медленной; в этом случае еще до крупной подвижки можно заметить изменение рельефа и перекос сооружений и принять предупредительные меры.

Второй тип характеризуется мгновенным перемещением тела оползня с очень и крайне быстрой скоростью. Защита от таких оползней сложна и здесь большое значение имеет заблаговременный прогноз потенциально возможных смещений.

По активности. В зависимости от активности оползневого процесса выделяют действующие и недействующие оползни.

Действующие оползни имеют свежие и ярко выраженные, несглаженные эрозией формы поверхности. Деревья на склонах, затронутые такими оползнями, отклоняются от их первоначального положения («пьяный лес»).

Недействующие затухшие оползни обычно покрыты растительностью и нарушены процессами эрозии так, что следы последнего движения трудноразличимы. Но движение может возобновиться, если факторы, приводящие к возникновению оползня, продолжают существовать.

По механизму процессаподразделяются: на оползни сдвига, выдавливания, вязкопластические, гидродинамического выноса, внезапною разжижения. Часто имеют признаки комбинированного механизма.

По мощности процесса оползни делят на:

малые – обвал рыхлой массы до 10 тыс. м3;

средние – обвал грунта 100 тыс. м3;

крупные – обвал рыхлых масс 1000 м3;

крупнейшие – обвал более 1 тыс. м.3.

По месту образования они подразделяются на горные, подводные и искусственных земляных сооружений (котлованов, каналов, отвалов пород).

Следует иметь в виду, что огромное многообразие оползневых явлений обусловливает многочисленность их классификаций, поэтому выше приведены лишь те, которые в значительной мере оказывают влияние на выбор и обоснование основных инженерных мероприятий по стабилизации оползневых склонов. Вместе с тем в зависимости от региональных условий каждый тип оползня данного района обладает специфическими особенностями, которые необходимо принимать во внимание при проектировании.

Причины оползней

Природные Антропогенные
- крутизна склона, превышающая угол естественного откоса; - землетрясения; - переувлажнение склонов, подмыв - выветривание твердых пород; - наличие в толще грунта глин, песков, льда; - пересечение пород трещинами; - чередование глинистых и песчано-гравийных пород. - вырубка лесов, кустарников на склонах; - взрывные работы; - распахивание склонов; - чрезмерный полив садов на склонах; - разрушение склонов котлованами, траншеями; - заваливание мест выхода подземных вод; - строительство жилья на склонах.

Лавины

Cнежные лавины – это разновидность оползней Силы сцепления снега переходят определенную границу, и гравитация вызывает смещение снежных масс по склону. Снежный покров, лежащий на склоне гор, находится в состоянии неустойчивого равновесия. Силы сцепления внутри снежной толщи и на границе с земной поверхностью противодействуют силе тяжести, стремящейся сбросить снег к подножию склона. Свойства самой снежной толщи при этом непрерывно меняются как из-за смены метеорологической обстановки, так и под воздействием процессов, идущих внутри толщи снега. Новые снегопады и метели увеличивают вес снежных масс, резкие перепады температуры воздуха меняют величину напряжения пластов твердого снега, оттепели порождают интенсивное таяние, дожди ослабляют связи между частицами льда в снегу. Оседание и уплотнение снега увеличивают устойчивость снежного покрова на склоне, в то время как миграция водяных паров приводит к формированию горизонтов разрыхления.

Пришедшие в движение массы снега скользят по поверхности склона или низвергаются, проходя часть пути в свободном падении. Падение лавин сопровождается в зависимости от состояния снега оглушительным шумом и скрежетом. В отличие от обвалов скальных пород снежные обвалы обычно в процессе движения значительно увеличиваются за счет захвата новых слоев снега, лежащих ниже по склону. Скорость лавин может достигать 80—100 м/с, объем отложившихся масс снега одной лавины — 2—6 млн. м3.

Причины снежных лавин

Природные Антропогенные
- скопление различных модификаций снега, толщиной слоя 30-70 см; - сильные и продолжительные метели, снегопады; - крутые склоны (от 15° до 50°) длиной более 500м; - отсутствие лесного массива на склонах; - внезапные оттепели; - сдувание ветром снега с подветренного слоя и перенос его на гребень, образование карниза над наветренным склоном; - вырубка леса и кустарников на склонах; - нарушение травяного покрова нерегулярным выпасом скота; - взрывные работы; - использование сильных источников звука; - громкий крик.

Существует несколько классификаций лавин, в основу которых положены разные признаки: тип снега (рыхлый или плотный), содержание в снегу воды, характер движения, поверхность скольжения, морфология пути.

Однако общая классификация лавин должна отражать наиболее существенные их признаки и служить практическим целям организации защиты от лавин. Этим требованиям в наибольшей степени отвечают два подхода к подразделению лавин на главные типы. Первый генетический — исходит из учета причин схода лавин, о которых говорилось выше; ценность его состоит в возможности разработки прогноза наступления лавинной опасности. В основе второго подхода лежат учет рельефа снегосборного бассейна и пути движения лавины. Этот принцип подразделения лавинных аппаратов позволяет рассчитывать объемы и дальности выброса лавин, т. е. необходим при картировании лавиноопасных территорий. В данном пособии мы рассмотрим первый подход к классификации лавин.

Генетическая классификация лавин, наиболее полно разработанная советским исследователем В. Н. Аккуратовым, включает следующие классы и типы лавин.

I. Класс сухих (холодных) лавин.

Состоят такие лавины обычно из сухого снега; сходят преимущественно зимой; пути схода строго не ограничены — могут сходить по ровному склону и частично по воздуху. Они имеют максимальную скорость, могут образовать воздушную волну. К классу сухих относятся следующие типы лавин:

1. Лавины из свежевыпавшего снега. Такие лавины возникают из-за перегрузки склонов при продолжительных снегопадах. Для схода лавин достаточно 0,3—0,5 м свежего снега. В многоснежных районах умеренного климата этот тип лавин является основным.

2. Лавины из метелевого снега. Причина их возникновения — большая скорость роста составляющей силы тяжести на склоне. Это наиболее характерный тип лавин для районов с умеренно холодным климатом и бурным ветровым режимом.

3. Лавины, связанные с перекристаллизацией снега и образованием слоев глубинной изморози (силы сцепления в которых ослаблены). Обычно редкие, но мощные лавины.

4. Лавины температурного сокращения снежного покрова. Эти лавины возникают в результате резкого понижения температуры воздуха. Также редкий тип лавин.

II. Класс мокрых (теплых) лавин.

Формируются такие лавины из влажного или из мокрого снега; сходят они преимущественно весной; пути схода обычно постоянны; движение осуществляется по нижним горизонтам снега или по грунту; скорость движения меньше, чем у сухих лавин; воздействие связано главным образом с давлением тяжелых (пропитанных водой) масс снега.

1. Лавины, возникающие в результате радиационных оттепелей. Это маломощные лавины южных (солнечных) склонов.

2. Лавины, связанные с оттепелями и весенним снеготаянием, обычно состоят из влажного, реже мокрого снега. Поверхностью скольжения служит обычно поверхность раздела слоев снега, т.е. лавины относятся к категории пластовых.

3. Грунтовые лавины формируются весной из мокрого, полностью пропитанного водой снега, вследствие продолжительных оттепелей и дождей или при бурном снеготаянии во время фенов. Сходят всегда по определенным путям, поэтому, как правило, имеют названия. Переносят значительное количество обломочного материала. Грохот этих лавин жители Альп называют «лавинным громом». Наиболее разрушительные в классе мокрых лавин.

Лавины — одно из наиболее широко распространенных и опасных природных явлений горных стран. Упоминания о лавинах встречаются в сочинениях писателей древности, живших более 2000 лет назад. Древнегреческий историк Полибий (201 —120 г. до н. э.) пишет о потерях от лавин при переходе войск Ганнибала через Альпы (218 г. до н. э.). Древнеримский географ Страбон (63 г. до н. э. — 20 г. н. э.) писал о лавинной опасности, подстерегающей путешественника в Альпах и на Кавказе.

В январе 1951 г. в зоне лавинных катастроф оказалась вся Альпийская горная цепь длиной около 700 км и шириной до 150 км. Снегопад, сопровождавшийся буранами, продолжался во многих районах в течение семи дней и закончился резким потеплением. Количество выпавшего снега местами превышало годовую норму осадков в 2—3 раза и достигало 2— 3 м. Склоны оказались перегруженными снегом, и начался массовый сход лавин. Нарушилась вся транспортная сеть Альп — шоссейные и железные дороги были местами разрушены или завалены и временно закрыты. Лавины сошли в местах, где многие поколения жителей их не знали. Были уничтожены здания отелей, заповедные леса. Сезон получил название «Зима террора».

В феврале 1999 года лавина массой в 170 тыс. т полностью разрушила посёлок Гальтур в Австрии, вызвав гибель 30 человек, а в начале марта 2012 года серия лавин в Афганистане разрушила жилые дома, вызвав гибель не менее 100 человек.

В России снежные лавины распространены в горных районах Кавказа, Урала, в Восточной и Западной Сибири, Дальнем Востоке, на Сахалине.

В наши дни, многие страны накопили значительный опыт защиты от лавин.

Комплекс противолавинных мероприятийсостоит их двух основных категорий - профилактической и инженерной.

Профилактические мероприятия сводятся к предупреждению о лавинной опасности и ее ликвидации искусственным сбрасыванием. Для предупреждения лавинной опасности составляются карты лавиноопасных зон и прогноз времени схода лавин.

Профилактические мероприятия включают также оповещение населения о наступлении лавиноопасных периодов.

Искусственное сбрасывание лавин проводится минометами или подрывом взрывчатыми веществами площади лавиносбора. Лавиносборы обстреливают и для контроля, чтобы проверить устойчивость снега на склоне.

Инженерные мероприятия применяются обычно для защиты от лавин населенных пунктов и капитальных сооружений. Для этого строятся туннели, галереи, навесы. Обычно эти сооружения используются для прикрытия отдельных участков на железных, шоссейных дорогах, проходящих в горах.

Уже много лет возводились сооружения, изменяющие путь движения лавины, уменьшающие скорость и дальность выброса, - лавинорезы, клинья, направляющие стенки, обойные дамбы и др.

Они частично гасят энергию лавины или отводят ее от защищаемого объекта. Часто практикуются и такие инженерные методы, как террасирование, застройка склонов снегоудерживающими щитами. Они предупреждают соскальзывание снега из лавиносборов. Это дорогой, но эффективный способ борьбы с лавинами. Охрана и восстановление лесов на склонах гор по-прежнему считается одним из важнейших мероприятий в лавиноопасных районах. В Альпах лес, снесенный лавиной, немедленно восстанавливают. Посадку лесов обычно сочетают с застройкой склонов снегоудерживающими конструкциями.

Естественной защитой от лавин служит густой лес. Он препятствует перераспределению снега ветром, разделяет снежный покров на отдельные участки. В Швейцарии закон, запрещающий рубки леса на склонах гор, существует с XIV в. Уничтожение лесов на склонах гор всегда стимулирует лавинную деятельность.

Селевые потоки

Сель – бурный грязевый или грязекаменный поток, состоящий из смеси воды и обломков горных пород, внезапно возникающий в бассейнах небольших горных рек. Селевые создают угрозу населенным пунктам, железным и автомобильным дорогам и другим сооружениям, находящимся на их пути.

Непосредственными причинами зарождения селей служат ливни, интенсивное таяние снега, прорыв водоемов, реже землетрясения, извержения вулканов.

Классификация селей

Все если по механизму зарождения подразделяются на три типа:эрозионный, прорывной и обвально-оползневый.

При эрозионном вначале идет насыщение водною потока обломочным материалом за счет смыва и размыва прилегающего грунта, а затем уже формируется селевая волна. Такой сель возникает в результате интенсивных и продолжительных ливней, бурного таяния снега.

Прорывной характеризуется интенсивным процессом накопления воды, одновременно размываются горные породы, наступает предел и происходит прорыв водоема (озера, внутриледниковой емкости, водохранилища). Селевая масса устремляется вниз по склону или руслу реки.

При обвально-оползневом происходит срыв массы водонасыщенных горных пород (включая снег и лед). Насыщенность потока в этом случае близка к максимальной.

Каждому горному району свойственны свои причины возникновения селей. Например, на Кавказе они происходят главным образом в результате дождей и ливней (85 %).

В последние годы к естественным причинам формирования селей добавилисьтехногенные факторы, нарушение правил и норм работы горнодобывающих предприятий, взрывы при прокладке дорог и строительстве других сооружений, вырубки леса, неправильное ведение сельскохозяйственных работ и нарушение почвенно-растительного покрова.

При движении сель представляет собой сплошной поток грязи, камней и воды. Крутой передний фронт селевой волны высотой от 5 до 15 м образует «голову» селя. Максимальная высота вала водогрязевого потока иногда достигает 25 м.

В России до 20 % территории находится в селеопасных зонах. Особенно активно селевые потоки формируются в Кабардино-Балкарии, Северной Осетии, Дагестане, в районе Новороссийска, Саяно-Байкальской области, зоне трассы Байкало-Амурской магистрали, на Камчатке в пределах Станового и Верхоянского хребтов. Они также происходят в некоторых районах Приморья, Кольского полуострова и на Урале. Еще в 1966 г. на территории СССР было зарегистрировано более 5 тысяч селевых бассейнов. В настоящее время их количество возросло.

Классификация селей на основе причин возникновения приведена в табл. 16.

Таблица 16

Типы Первопричины Распространение и зарождение
1. Дождевой Ливни, затяжные дожди Самый массовый на Земле тип селей образуется в результате размыва склонов и появления оползней
2.Снеговой Интенсивное снеготаяние Происходит в горах Субарктики. Связано со срывом и переувлажнением снежных масс
3. Ледниковый Интенсивное таяние снега и льда В высокогорных районах. Зарождение связано с прорывом талых ледниковых вод
4. Вулканогенный Извержения вулканов В районах действующих вулканов. Самые крупные. Вследствие бурного снеготаяния и прорыва кратерных озер
5. Сейсмогенный Сильные землетрясения В районах высокой сейсмичности. Срыв грунтовых масс со склонов
б. Лимногенный Образование озерных плотин В высокогорных районах. Разрушение плотин
7. Антропогенный прямого воздействия Скопление техногенных пород. Некачественные земляные плотины На участках складирования отвалов. Размыв и сползание техногенных пород. Разрушение плотин
8. Антропогенный косвенного воздействия Нарушение почвенно- растительного покрова На участках сведения лесов, лугов. Размыв склонов и русел

На основе главных факторов возникновениясели классифицируютсяследующим образом: зонального проявления — главным фактором формирования являются климатические условия (осадки). Сход происходит систематически, пути движения относительно постоянны. Регионального проявления (главный фактор формирования — геологические процессы). Сход происходит эпизодически и пути движения непостоянны. Антропогенные — это результат хозяйственной деятельности человека. Происходят там, где наибольшая нагрузка на горный ландшафт. Образуются новые селевые бассейны. Сход - эпизодический.

Классификация по мощности (по перенесенной твердой массе):

1. Мощные (сильной мощности), с выносом более 100 тыс. м3 материалов. Бывают один раз в 5-10 лет.

2. Средней мощности, с выносом от 10 до 100 тыс. м3 материалов. Бывают один раз в 2-3 года.

3. Слабой мощности (маломощные), с выносом менее 10 тыс. м3 материалов. Бывают ежегодно, иногда несколько раз в году.

Классификация селевых бассейнов по повторяемости селей характеризует интенсивность развития или его селеактивность. По частоте схода селей можно выделить три группы селевых бассейнов:

- высокой селевой активности (с повторяемостью один раз в 3-5 лег и чаще);

- средней селевой активности (с повторяемостью один раз в 6-15 лет);

- низкой селевой активности (с повторяемостью один раз в 16 лет и реже).

Классифицируются сели также и по их воздействию на сооружения:

- маломощный — небольшие размывы, частичная забивка отверстий водопропускных сооружений.

- среднемощный — сильные размывы, полная забивка отверстий, повреждение и снос бесфундаментных строений.

- мощный — большая разрушительная сила, снос мостовых ферм, разрушение опор мостов, каменных строений, дорог.

- катастрофический — полное разрушение строений, участков дорог вместе с полотном и сооружениями, погребение сооружений под наносами.

Иногда применяется классификация бассейнов по высоте истоков селевых потоков:

- высокогорные: Истоки лежат выше 2500 м, объем выносов с 1 км2 составляет 15-25 тыс. м3 за один сель;

- среднегорные: Истоки лежат в пределах 1000-2500 м, объем выноса с 1 км2 составляет 5-15 тыс. м3 за один сель;

- низкогорные: Истоки лежат ниже 1000 м, объем выносов с 1 км2 менее 5 тыс. м3 за один сель.

Причины селей

Природные Антропогенные
- наличие на склонах песка, гальки, гравия; - наличие значительного объема воды (ливни, таяние ледников, снегов, прорыв озер); - крутизна склонов более 100; - землетрясения; - вулканическая деятельность; -обрушение в русло рек большого количества грунта (обвал, оползень); - резкое повышение температуры воздуха. - создание на склонах гор искусственных водоемов; - вырубка леса, кустарника на склонах; - деградация почвенного покрова нерегулярным выпасом скота; - взрывы, разработка карьеров; - нерегулируемый сброс воды из ирригационных водоемов на склонах; - неправильное размещение отвалов отработанной породы горнодобывающими предприятиями; - подрезка склонов дорогами; - массовое строительство на склонах.

Обвалы

Обвалы (горный обвал) — отрыв и катастрофическое падение больших масс горных пород, их опрокидывание, дробление и скатывание на крутых и обрывистых склонах.

Обвалы природного происхождения наблюдаются в горах, на морских берегах и обрывах речных долин. Они происходят в результате ослабления связанности горных пород под воздействием процессов выветривания, подмыва, растворения и действия сил тяжести. Образованию обвалов способствуют: геологическое строение местности, наличие на склонах трещин и зон дробления горных пород. Чаще всего (до 80 %) современные обвалы связаны с антропогенным фактором. Они образуются в основном при неправильном проведении работ, при строительстве и горных разработках.

Обвалы характеризуются мощностью обвального процесса (объемом падения горных масс) и масштабом проявления (вовлечение в процесс площади).

По мощности обвального процесса обвалы подразделяют на крупные (отрыв пород 10 млн м3), средние (до 10 млн м3) и мелкие (отрыв пород менее 10 млн м3).

По масштабу проявления обвалы подразделяются на огромные (100- 200 га), средние (50-100 га), малые (5-50 га) и мелкие (менее 5 га).

Кроме того, обвалы могут характеризоваться типом обрушения, которые определяются крутизной склона скатывания обвальных масс.

3.4.2. Инженерная подготовка оползневых территорий

Основными градостроительными задачами в отношении оползневых склонов являются:

- обеспечение стабильного состояния оползневого склона, т. е. сохранение равновесия всех действующих сил;

- создание условий для использования оползневого склона и прилегающих территорий в тех или иных градостроительных целях (застройка, парки и сады, дороги и т. д.).

Противооползневые мероприятия разделяются на профилактические и радикальные. Первые преследуют цели сохранения равновесия сил и некоторой стабилизации оползня, вторые устраняют в той или иной степени основные причины действия оползня, исключая его активизацию в будущем. Радикальные мероприятия устраняют основные причины возникновения и действия оползней, локальные же мероприятия задерживают или препятствуют движению оползня.

Профилактические мероприятия по борьбе с оползнями, как правило, легче выполнимы по сравнению с мероприятиями, осуществляемыми на том же участке при полном развитии оползневого процесса.

Решение вопросов инженерной подготовки территорий с оползневыми явлениями требует прежде всего исчерпывающих инженерно-геологических, гидрогеологических и гидрологических изысканий с последующим глубоким .анализом полученных материалов. При этом основными вопросами являются: - сущность явления и причины его возникновения; - границы распространения оползневых явлений вдоль склона и возможного влияния на территорию города; - характер происходящего движения (скольжения) оползня;

- прогноз проявления и действия оползня в перспективе.

В прогнозе предусматривается возможность движения оползня в силу изменяющихся причин, нарушения равновесия системы.

Изучение оползневого склона включает не только явление оползания, но и сопутствующие процессы оврагообразования, подтопления склона, движения подземных вод и т. д. Изучение этих явлений и процессов производится не только на оползневом склоне, но и на прилегающей территории.

При проектировании противооползневых мероприятий исходным материалом являются данные инженерных изысканий, в состав которых входят: - сбор и систематизация материалов, относящихся к исследованию оползневого участка; - изучение тела оползня с помощью геологосъемочных, геофизических, геодезических, буровых и других видов работ; - изучение свойств грунтов и режима подземных вод;

- наблюдения за движением оползня, включающие определение скорости и характера движения оползневой массы и установление причин активизации оползня.

Содержание и объем мероприятий по борьбе с оползнями обусловливаются причинами прохождения оползневого процесса. Противооползневые мероприятия многообразны и осуществляются, как правило, комплексно (рис. 45).

Рис. 45. Схема комплексных мероприятий по борьбе с оползневыми процессами на склоне морского берега

В условиях современного города всегда является целесообразным осуществление противооползневых мероприятий в полном комплексе и на всем протяжении берегового склона, если даже оползневые участки расположены с некоторыми разрывами между ними.

Основное требование при разработке мер защиты заключается в необходимости повысить коэффициент запаса устойчивости склона не ниже требуемого значения при всех возможных вариантах его параметров, от которых зависит стабильность. Проектировать начинают с анализа устойчивости склона, рассматривая состояние откоса в течение продолжительного периода, так как свойства грунтов и гидрогеологические условия могут меняться во времени. Такой анализ при освоении территории необходим не только на период строительства, но и эксплуатации. Устойчивость склонов оценивают, изучая как естественные откосы, так и искусственно созданные.

Выбор противооползневых мероприятий делают на основе технико-экономического сравнения вариантов.

В практике проектирования с оползневыми процессами борются комплексно, предусматривая меры профилактики на потенциально опасных склонах и радикальные на участках смещения горных пород. Одновременно устанавливают режим строительства и эксплуатации в зонах оползневых участков. Это запрещение подрезок в нижней части склона и подсыпок — в верхней, уничтожения растительности и распашки склонов, проведения нерегулируемого полива и сброса поверхностных вод. Накладывают ограничение на скорость движения транспорта по улицам прилегающей территории, разрабатывают специальные способы выполнения строительных работ.

Вертикальная планировка оползневых склонов

Вертикальную планировку потенциально опасного оползневого склона производят уполаживанием его до устойчивого состояния, а при большой высоте еще и террасированием, устраивая, так же как на овражных склонах, бермы с водоотводящими лотками. Одновременно склоны защищают от выветривания и размыва поверхностными водами, укрепляя их дерном или посевом многолетних трав.

Перераспределение земляных масс на склоне целесообразно производить за счет срезки верхней части и перемещения ее в нижнюю. На мелких оползнях улолаживание откоса или придание ему ломаного профиля могут быть эффективными стабилизирующими средствами на потенциально неустойчивых участках.

На мелких оползнях с выявленной поверхностью скольжения целесообразно устраивать упорные призмы (контрфорсы) из земляных масс, отсыпаемых в языковой части естественного склона (рис. 46, а), у подножья искусственной насыпи (рис. 46, б) или откоса выемки (рис. 46, в).

Контрфорсы проектируют так, чтобы увеличить удерживающие силы вблизи подошвы откоса до величин, обеспечивающих соответствующий коэффициент устойчивости. Параметры этих сооружений определяют расчетом, принимая во внимание профиль откоса и необходимую величину сопротивления сдвигу.

Рис. 46. Устройство грунтовых упорных призм: 1 - упорная призма; 2 — коренные породы; 3 — поверхность скольжения; 4 — первоначальная поверхность склона; 5 — насыпь из зернистого грунта; 6 — то же, из легкого материала; 7 — отметка до реконструкции насыпи; 8 — проектная отметка поверхности; 9 — ил, глина с органическими остатками; 10 — лоток водоотвода; 11— дренаж

Нормальная работа любого подпорного сооружения зависит от его способности сопротивляться опрокидыванию и скольжению, сдвигу по контакту или ниже его с вовлечением основания. На опрокидывание рассчитывают, рассматривая упорную призму (контрфорс) как гравитационное сооружение с распределением сил, обеспечивающим соответствующее направление равнодействующей. Аналогичным образом контрфорс рассчитывают на сдвиг по контакту или ниже его с определением необходимой глубины заложения основания. Проверочные расчеты проводят в нескольких поперечных сечениях на разных отметках глубины, чтобы определить прочность упорной призмы на сдвиг.

Для снижения сдвигающих сил в искусственно созданной насыпи автомобильных дорог производят ее реконструкцию, частично заменяя грунт насыпи более легким (рис. 46, б), например котельным шлаком или ракушечником. В последнее время для уменьшения массы насыпи применяют полистирольные блоки и плиты. Во всех случаях сооружение пригрузочных насыпей сопровождают защитой от поверхностных, а при необходимости и подземных вод.

Page 23

Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций: ими могут быть подпорные стенки, свайные ряды, инъекционные преграды и простейший тип удерживающих сооружений — упорные призмы из грунта.

Подпорные стенки проектируют чаще всего для удержания неглубоких слоев, смещающихся по четко определенной поверхности скольжения (рис. 47). В зонах с ответственными зданиями и сооружениями подпорными стенками удерживают и более мощные слои, потенциальные поверхности скольжения которых известны. Как правило, подпорные стенки значительной высоты проектируют на участках автомобильных дорог, где с их помощью стабилизируют естественные и искусственные склоны.

Подпорные стенки делают из каменной кладки, бетона и бутобетона, железобетона, массивными или облегченными на свайном основании. В некоторых случаях при проектировании автомобильных дорог на склонах прибегают к устройству массивных стенок из армированного грунта или анкерных креплений. Сооружения врезают основанием в несмещающийся слой грунта и защищают от подземных и поверхностных вод.

Рис. 47. Удерживающие подпорные стены и свайные сооружения: а — массивная подпорная стена; б — то же, ниже подошвы склона; в — то же, в сочетании со шпунтовым рядом; г — консольная подпорная стена; д — то же, на контрфорсах; е — то же, в сочетании со сваями; ж — стена из армированного грунта; з — то же, монолитная заанкеренная; и — то же, из сборных панелей, заанкеренных в грунте; к — свайное поле из забивных свай; л — то же, из набивных; 1 — коренные породы; 2 — водовыпуск; 3 — плоскость скольжения; 4 — лоток; 5 — шпунтовый ряд; 6 — фильтрующая засыпка; 7 — поверхность естественного рельефа; 8 — контрфорс; 9 — сваи: 10 — арматура, заанкеренная в грунте; 11 — облицовка; 12 — железо­бетонная плита; 13 — анкер-свая с камуфлетной головкой; 14 — сваи-шпонки, в верхней части заполненные глиной

Параметры удерживающих сооружений определяют расчетом на опрокидывание и сдвиг. Выбор ответственных удерживающих сооружений и их конструктивное решение обосновывают технико-экономическими расчетами.

Подпорные стенки из армированного грунта представляют собой крупные массивы из слоев грунта, проложенных тонкими металлическими полосами, способными выдержать большие внешние нагрузки. Вертикальную боковую поверхность стенки укрепляют бетонными неармированными плитами, а в некоторых случаях — металлом. Это удерживающее гравитационное сооружение, которое поставлено на устойчивое основание. Такой контрфорс оказывает сопротивление возникающим в склоне сдвигающим силам и обладает достаточной прочностью на опрокидывание и скольжение по контакту (или с захватом основания) и на скол внутри удерживающего сооружения.

Подпорные стенки с анкерами позволяют передавать усилия, испытываемые стенкой со стороны обратной засыпки, на достаточно прочную породу, залегающую вне оползня, с помощью анкерных оттяжек. Эти оттяжки могут быть предварительно напряженными или постепенно напрягающимися в процессе эксплуатации сооружения. Их устраивают из тросов, штанг или проволоки, заделывая с помощью специальных устройств в коренной грунт.

Решение о применении анкеров должно быть подкреплено статическим расчетом, экономическим обоснованием и техническими возможностями производства работ.

Анкерирование??? как способ укрепления склонов связано с большими затратами, значительная доля которых приходится на предохранение анкеров от коррозии, поэтому использование этого крепления ограничивают такими случаями, когда другие средства крепления неосуществимы.

Конструкции типа свай или шпонок применяют, когда устройство упорных сооружений нецелесообразно по планировочным или другим соображениям. Обычно сваи и шпонки ставят при глубине ожидаемой поверхности смещения в пределах 1,5-2,0 м, если консистенция и структура грунта исключает его движение между сваями или шпонками. В этом случае их установка в сочетании с организацией поверхностного стока и дренажа экономически целесообразней, чем контрфорсы.

Сваи или шпонки располагают в плане в шахматном порядке и заглубляют в несмещающийся грунт на глубину не менее 2 м. Их погружают в предварительно прорезанные на склоне или у его подножья скважины. Сваи делают чаще всего из бетона или железобетона, а шпонки из гидравлической извести, иногда используют металлические сваи.

Любые свайные устройства требуют тщательных расчетов на опрокидывание и срез, с учетом реальных параметров сопротивления грунта сдвигу. Шпонки рассчитывают только на срез.

Page 24

Искусственное измерение рельефа склона следует предусматривать для предупреждения и стабилизации процессов сдвига, скольжения, выдавливания, обвалов, осыпей грунтов.

Образование рационального профиля склона (откоса) достигается приданием ему соответствующей крутизны и террасированием, отсыпкой в нижней части склона упорной призмы (контрбанкета).

Ширину (террас) и высоту уступов, а также расположение и форму банкетов следует определять расчетом общей и местной устойчивости склона (откоса), планировочными решениями, условиями производство работ и эксплуатационными требованиями.

На террасах необходимо предусматривать устройство водоотводов, а в местах высачивания подземных вод – дренажей.

Должен быть организован беспрепятственный сток поверхностных вод, исключено застаивание вод на бессточных участках и попадание на склон вод с присклоновой территории.

Устройство очистных сооружений в оползнеопасной зоне не допускается.

Для достижения требуемого понижения уровня подземных вод надлежит применять следующие виды водопонизительных устройств:

- траншейные дренажи (открытые траншеи и канавы);

- закрытые дренажи (траншеи, заполненные фильтрующим материалом) для осушения оползневого тела, рассчитанные, как правило, на недолговременный срок службы;

- трубчатые (в том числе мелкого заложения) и галерейные дренажи – в устойчивой зоне за пределами смещающихся грунтов для перехвата подземного потока при продолжительном сроке службы;

- пластовые дренажи на участках высачивания подземных вод на склонах (откосах);

- водопонизительные скважины различных типов в сочетании с дренажами или взамен их в случае большей эффективности или целесообразности их применения.

Дренирование подземных вод предусматривают для предохранения грунтов откоса от насыщения водой. Это мероприятие проводят как для действующих, так и недействующих оползней.

Обычно подземные воды дренируют одновременно на прилегающей территории и оползневом склоне.

Для перехвата подземных вод на прилегающей к склону территории устраивают дренажные сооружения, расположенные на безопасном расстоянии от зоны оползания. Тип и систему дренажных устройств проектируют в соответствии с гидрогеологическими условиями территории на основе требований, изложены ранее.

На оползневом склоне проектируют специфические дренажные сооружения, откосные прорези, наклонный дренаж, каптажные колодцы и наклонные скважины. В качестве простейших систем могут служить лотки и канавы глубиной до 3 м. Область их применения — это защита неглубоких оползней типа сплывин. Лотки используют также в качестве элементов выпуска подземных вод из слоев грунта, близких к поверхности склона.

Откосные дренажи применяют обычно для осушения откосов, потенциально подверженных поверхностным оползневым смещениям при неясно выраженных водоносных слоях или при многочисленных выходах подземных вод наружу в виде ключей. В конструктивном отношении они представляют собой сравнительно неглубокие траншеи, закладываемые ниже поверхности возможного оползания и заполненные дренирующим материалом (рис. 48, а). Их располагают поперек склона, а для наиболее полного перехвата грунтовых вод устраивают в виде призм разветвлениями различной формы на расстоянии друг от друга от 3 до 15 м в зависимости от характера и состояния осушаемых грунтов.

Рис. 48. Схемы дренажных устройств на оползневых склонах:

1 — коренные породы; 2 — поверхность скольжения; 3 — бровка откоса: 4 — дренажное устройство; 5 — лоток; 6 — колодцы; 7 — водоотводящие трубопроводы; 8 — грунт обратной засыпки; 9 — песок; 10 — гравий или щебень; 11 — бетонный лоток; 12 — дренажные скважины; 13 — депрессионная кривая; 14 — одерновка; 15 — утепляющий слой; 16 — контрфорс; 17 — дренажная труба; 18 — водонасыщенный грунт; 19 — каптажный колодец

Дренажные прорези устраивают при осушении толщи наносов на оползневых склонах, где другие типы дренажей, даже при незначительных подвижках, быстро выходят из строя. Их закладывают на бровке, отводя воду из насыщенного слоя (рис. 48, б). Для ее сброса дренажные прорези соединяют трубопроводами с нижним лотком или другими водоотводящимн сооружениями.

Прорези представляют собой траншею глубиной 6-12 м, заполненную дренирующим материалом и врезанную основанием в коренной грунт. Прорези защищают от засорения, укладывая поверх дренирующего материала дерн корнями кверху или соломенные маты и другие материалы, и забивают траншею глиной и грунтом.

Если водоносные горизонты имеют выход на склон, то их осушают горизонтальными или наклонными скважинами, заложенными со стороны склона (рис. 43, в) на отметках, близких к водоупору. Часть трубы перфорируют, превращая в фильтр. Механизм действия таких дрен заключается в следующем. При поступлении воды к откосу на участках, где заложены дрены, она постепенно поглощается перфорированной частью труб. В результате по мере приближения к откосу УГВ понижается, образуя сводчатую депрессионную кривую, имеющую общее падение вдоль дрен.

При фронтальном выклинивании водоносного горизонта на оползневом склоне применяют насланный дренаж, который укладывают на устойчивый откос на всю мощность водоносного горизонта. В конструктивном отношении он аналогичен пластовому и состоит из фильтра, дренажной трубы и утепляющего слоя, толщину которого назначают с учетом глубины промерзания грунтов (рис. 48, г).

Когда грунтовые воды выклиниваются на склоне в виде родников, проектируют бетонные или железобетонные каптажные колодцы, снабженные обратными фильтрами в местах выхода одиночных родников (рис. 48, б). Дренажные воды, как правило, отводят из колодца через трубчатый водосброс в ливневую канализацию.

Дренажные сооружения для стабилизации откосов в равной мере необходимы как на естественных склонах, так и при возведении искусственной насыпи, где оползневые смещения могут появиться в грунтах основания из-за чрезмерного напряжения от массы насыпи и гидростатического давления подземных вод, режим которых нарушен.

Устройства для перехвата и понижения подземных вод и предотвра­щения оползневых процессов выбирают на основе технико-экономического сопоставления. При этом рассматривают несколько вариантов различных дренажных сооружений, но сравнивают их и с другими методами защиты.

Page 25

На прибрежных склонах основной причиной развития оползневых процессов является подмыв водами рек естественных склонов или искусственных откосов и морская абразия береговых уступов. Поскольку активизация оползневых процессов и переработка берегов тесно связаны, то большая роль в комплексе противооползневых мероприятий принадлежит берегоукреплениям.

Берегоукрепление может быть выполнено в виде откосов, когда соответствующие одежды укладывают на предварительно спланированную поверхность, и набережных стенок (контрфорсов). Последние применяют, когда из-за нехватки свободного пространства на прибрежной территории осуществление других мероприятий осложняется или становится невозможным.

Берегоукрепления с точки зрения их влияния на режим водоемов относят к пассивным и проектируют в сочетании с активными, наносоудерживающими сооружениями: бунами и волнорезами. Буны являются одной из самых распространенных конструкций, стабилизирующих морской берег. Они представляют собой массивные сооружения, которые размещают перпендикулярно или под углом к береговой линии, заглубляя их основание в коренную породу (рис. 49).

Буны пересекают подвижную часть наносов и препятствуют их продольному транзиту. В результате наносы аккумулируются между бунами в приурезной части акватории и частично гасят энергию волны. Степень воздействия бун на водный поток и стабилизацию берегового склона существенно зависит от их взаимного размещения и длины. Параметры бун, как и других малых гидротехнических сооружений, активно влияющих на водный поток, рассчитывают по методике, описанной в литературе.

Рис. 49. Прибрежные противооползневые сооружения:

а — расположение бун в плане; б — поперечное сечение по бунам: в, г — незатопленный и затопленный волноломы (г — затопленный в сочетании с другими защитным мероприятиями);

1 — вертикальный фильтр; 2 — дренажная галерея; 3 — водоотводящая штольня: 4 — лоток: 5 — коренные породы; 6 — плоскость скольжения; 7 — подпорная стенка: 6 — искусственный пляж; 9 — затопленный волнолом

Область эффективного использования бун для борьбы с противооползневыми явлениями — это стабилизация надводных склонов и пляжей. Подводные склоны, особенно на большом протяжении, стабилизировать с их помощью не удается, так как склоны могут обрушиться в результате подвижки земляных масс.

Для стабилизации склонов поэтому нередко проектируют не только буны, но и волнорезы (волноломы). Их используют для защиты подводной части склона.

Волноломы делают как затопленного, так и незатопленного типа (рис. 49) из железобетонных массивов или оболочек, заполненных бетоном. Волноломы защищают от абразии берега путем частичного гашения волны и накопления наносов на тех участках акватории, где в подводной части склона имеют место оползни выдавливания.

Проблема борьбы с эрозией у подножья склона сводится к сохранению различными способами надежного упора в их нижней части и увеличению других удерживающих сил. В практике проектирования с этой целью используют, как правило, комплекс активных и пассивных защитных сооружений в сочетании с общими и специальными мероприятиями инженерной подготовки. Так, например, на побережье около Одессы создана из привозного материала полоса искусственных пляжей от Ланжерона до Аркадии протяженностью 5 км и шириной 40-50 м. Сохранение пляжей обеспечено комплексом гидротехнических сооружений: бун и волноломов. Для перехвата подземных вод запроектирована дренажная галерея на расстоянии 200 м от бровки обрыва с удалением грунтовых вод с помощью водоотводящей штольни.

Комплексное решение противооползневых мероприятий в Крыму предусматривает сочетание контрфорсных и берегоукрепительных сооружений, дренирование оползневых масс, разгрузку верхней части склона и уполаживание откосов с регулированием поверхностного стока.

Берегозащитные сооружения и мероприятия.Для инженерной защиты берегов рек, озер, морей, водохранилищ применяют следующие виды сооружений и мероприятий, приведенные в таблице 17.

Таблица 17

Вид сооружения и мероприятия Назначение сооружения и мероприятия и условия их применения
I Волнозащитные  
1 Вдольбереговые  
Подпорные береговые стены (набережные) волноотбойного профиля из монолитного и сборного бетона и железобетона, камня, ряжей, свай На морях, водохранилищах, озерах и реках для защиты зданий и сооружений I и II классов, автомобильных и железных дорог, ценных земельных угодий
Шпунтовые стенки железобетонные и металлические В основном на реках и водохранилищах
Ступенчатые крепления с укреплением основания террас На морях и водохранилищах при крутизне откосов более 15°
Массивные волноломы На морях и водохранилищах при стабильном уровне воды
2 Откосные  
Монолитные покрытия из бетона, асфальтобетона, асфальта На морях, водохранилищах, реках, откосах подпорных земляных сооружений при достаточной их статической устойчивости
Покрытия из сборных плит При волнах до 2,5 м
Покрытия из гибких тюфяков и сетчатых блоков, заполненных камнем На водохранилищах, реках, откосах земляных сооружений (при пологих откосах и невысоких волнах - менее 0,5-0,6 м)
Покрытия из синтетических материалов и вторичного сырья То же
II Волногасящие  
1 Вдольбереговые  
Проницаемые сооружения с пористой напорной гранью и волногасящими камерами На морях и водохранилищах
2 Откосные  
Наброска из камня На водохранилищах, реках, откосах земляных сооружений при отсутствии рекреационного использования
Наброска или укладка из фасонных блоков На морях и водохранилищах при отсутствии рекреационного использования
Искусственные свободные пляжи На морях и водохранилищах при пологих откосах (менее 10°) в условиях слабовыраженных вдольбереговых перемещений наносов и стабильном уровне воды
III Пляжеудерживающие  
1 Вдольбереговые  
Подводные банкеты из бетона, бетонных блоков, камня На морях и водохранилищах при небольшом волнении для закрепления пляжа
Загрузка инертными на локальных участках (каменные банкеты, песчаные примывы и т.п.) На водохранилищах при относительно пологих откосах
2 Поперечные  
Буны, молы, шпоры (гравитационные, свайные, из фасонных блоков и др.) На морях, водохранилищах, реках при создании и закреплении естественных и искусственных пляжей
IV Специальные  
1 Регулирующие  
Управление стоком рек (регулирование сброса, объединение водостоков в одно устье и др.) На морях для увеличения объема наносов, обход участков малой пропускной способности вдольберегового потока
Сооружения, имитирующие природные формы рельефа На водохранилищах для регулирования береговых процессов
Перебазирование запаса наносов (переброска вдоль побережья, использование подводных карьеров и т.д.) На морях и водохранилищах для регулирования баланса наносов
2 Струенаправляющие  
Струенаправляющие дамбы из каменной наброски На реках для защиты берегов рек и отклонения оси потока от размывания берега
Струенаправляющие дамбы из грунта На реках с невысокими скоростями течения для отклонения оси потока
Струенаправляющие массивные шпоры или полузапруды То же
3 Склоноукрепляющие  
Искусственное закрепление грунта откосов На водохранилищах, реках, откосах земляных сооружений при высоте волн до 0,5 м

Выбор вида берегозащитных сооружений и мероприятий или их комплекса следует производить в зависимости от назначения и режима использования защищаемого участка берега с учетом в необходимых случаях требований судоходства, лесосплава, водопользования и пр.

При выборе конструкций сооружений следует учитывать, кроме их назначения, наличие местных строительных материалов и возможные способы производства работ.

В состав комплекса морских берегозащитных сооружений и мероприятий при необходимости должно быть включено регулирование стока устьевых участков рек в целях изменения побережья или обеспечения его речными наносами.

Page 26

Кроме рассмотренных выше методов борьбы с оползневыми и обвальными явлениями также рассматриваются следующие мероприятия и сооружения инженерной защиты.

Удерживающие сооружения.Удерживающие сооружения следует предусматривать для предотвращения оползневых и обвальных процессов при невозможности или экономической нецелесообразности изменения рельефа склона (откоса).

Удерживающие сооружения применяют следующих видов:

- подпорные стены (на естественном или свайном основании);

- свайные конструкции и столбы – для закрепления неустойчивых участков склона;

- анкерные крепления – в качестве самостоятельного удерживающего сооружения (с опорными плитами, балками и т.д.) и в сочетании с подпорными стенами, сваями, столбами;

- поддерживающие стены – для укрепления нависающих скальных карнизов;

- контрфорсы – отдельные опоры, врезанные в устойчивые слои грунта, для подпирания отдельных скальных массивов;

- опояски (упорные пояса) – невысокие массивные сооружения для поддержания неустойчивых откосов;

- облицовочные стены – для предохранения грунтов от выветривания и осыпания;

- пломбы (заделка пустот, образовавшихся в результате вывалов на склонах) для предохранения скальных грунтов от выветривания и дальнейших разрушений;

- покровные сетки в сочетании с анкерными креплениями.

Для свайных конструкций следует предусматривать, как правило, буронабивные железобетонные сваи. Применение забивных свай допускается в случаях, когда проведение сваебойных работ не ухудшает условий устойчивости склона (откоса).

При наличии подземных вод следует предусматривать гидроизоляцию по верховой грани подпорных стен и устройство застенного дренажа с выводом вод за пределы подпираемого грунтового массива.

Улавливающие сооружения.Улавливающие сооружения и устройства (стены, сетки, валы, траншеи, надолбы) следует предусматривать для защиты объектов от воздействия осыпей, вывалов, падения отдельных скальных обломков.

Улавливающие стены и сетки располагают у подошвы склонов (откосов) крутизной 250 – 350 для защиты от воздействия осыпей, вывалов, падения отдельных скальных обломков и небольших обвалов.

Улавливающие траншеи и улавливающие полки следует размещать у подошвы обвалоопасных склонов (откосов) высотой до 60 м и крутизной 350 для защиты от вывалов отдельных обломков грунта объемом до 1 м 3, улавливающие валы – у подошвы обвалоопасных склонов большой протяженности.

Улавливающие стены, траншеи и валы допускается располагать на склонах на высоте не более 30 м над защищаемым объектом при крутизне склона не более 250.

Оградительные стены следует размещать у подошвы склонов (откосов) высотой до 30 м (соответственно 50 м) и крутизной 400 – 450 для улавливания мелких (до 0,01 м3) обломков скального грунта или задержания осыпающегося скального грунта.

Покровные свободно висящие сетки надлежит применять для защиты объектов, близко расположенных к подошве склона (откоса), от падающих скальных обломков.

Надолбы следует предусматривать на затяжных склонах высотой до 50-60 м и крутизной до 300 в комплексе с другими улавливающими сооружениями и устройствами для погашения скорости обломков скального грунта.

В проектах улавливающих сооружений и устройств следует предусматривать возможность подъезда транспортных средств и очистки улавливающих пазух от скопления продуктов выветривания, осыпей и обвалов в условиях эксплуатации.

Противообвальные галереи.Противообвальные галереи необходимо размещать на обвальных участках железных, автомобильных и пешеходных дорог для защиты от падающих обломков и глыб и рассчитывать на нагрузки и воздействия. На кровле противообвальных галерей необходимо устраивать амортизирующую грунтовую отсыпку, снижающую динамическое воздействие обвалов, предотвращающую повреждение конструкций и обеспечивающую скатывание обломков через галерею. В основании отсыпки необходимо укладывать гидроизоляцию, а также предусматривать отвод с кровли галерей поверхностных вод. Для отвода подземных вод, поступающий к галерее с верховой стороны, должен быть устроен продольный застенный дренаж.

Агролесомелиорация, защитные покрытия и закрепление грунтов.Мероприятия по агролесомелиорации следует предусматривать в комплексе с другими противооползневыми и противообвальными мероприятиями для увеличения устойчивости склонов (откосов) за счет укрепления грунта корневой системой, осушения грунта, предотвращения эрозии, уменьшения инфильтрации в грунт поверхностных вод, снижения воздействия выветривания.

Мероприятия по агролесомелиорации включает: посев многолетних трав, посадку деревьев и кустарников в сочетании с посевом многолетних трав или одерновкой.

Подбор растений, их размещение в плане, типы и схемы посадок следует назначать в соответствии с почвенно-климатическими условиями, особенностями рельефа и эксплуатации склона (откоса), а также с требованиями по планировке склона и охране окружающей среды.

Посев многолетних трав без других вспомогательных средств защиты допускается на склонах (откосах) крутизной до 350, а при большей крутизне (до 450) – с пропиткой грунта вяжущими материалами.

Для обеспечения устойчивости склонов (откосов) в слабых и трещиноватых грунтах допускается применять цементацию, смолизацию, силикатизацию, электромеханическое и термическое закрепление грунтов.

Для защиты обнаженных склонов (откосов) от выветривания, образования вывалов и осыпей допускается применять защитные покрытия из торкретбетона, набрызг-бетона и аэроцема (вспененного цементно-песчаного раствора), наносимые на предварительно навешанную и укрепленную анкерами сетку.

Для снижения инфильтрации поверхностных вод в грунт на горизонтальных и пологих поверхностях склонов (откосов) допускается применять покрытия из асфальтобетона и битумоминеральных смесей.

Противоселевые сооружения и мероприятия.Для инженерной защиты территорий, зданий и сооружений от селевых потоков применяют следующие виды сооружений и мероприятий, приведенныев таблице 9.

Таблица 9

Вид сооружения и мероприятия Назначение сооружения, мероприятия и условия их применения
I Селезадерживающие  
Плотины бетонные, железобетонные, из каменной кладки: водосбросные, сквозные. Плотины из грунтовых материалов (глухие) Задержание селевого потока в верхнем бьефе. Образование селехранилищ
II Селепропускные  
Каналы. Селеспуски Пропуск селевых потоков через объект или в обход него
III Селенаправляющие  
Направляющие и ограждающие дамбы. Шпоры Направление селевого потока в селепропускное сооружение
IV Стабилизирующие  
Каскады запруд. Подпорные стены. Дренажные устройства. Террасирование склонов. Агролесомелиорация Прекращение движения селевого потока или ослабление его динамических характеристик
V Селепредотвращающие  
Плотины для регулирования селеобразующего паводка. Водосбросы на озерных перемычках Предотвращение селеобразующих паводков
VI Организационно-технические Организация службы наблюдения и оповещения Прогноз образования селевых потоков

Противолавинные сооружения и мероприятия.Для инженернойзащиты территории, зданий и сооружений от снежных лавин применяют следующиевиды сооружений и мероприятий, приведенные в таблице 10.

Таблица 10

Вид сооружения и мероприятия Назначение сооружения и мероприятия и условия их применения
I Профилактические  
Организация службы наблюдения, прогноза и оповещения Прогноз схода лавин. Прекращение работ и доступ людей в лавиноопасны зоны на время схода лавин и эвакуация людей из опасной зоны
Искусственно регулируемый сброс лавин Регулируемый спуск лавин и разгрузка от неустойчивых масс снега путем обстрелов, взрывов, подпиливания карнизов и т.п. на основе прогноза устойчивости масс снега на склоне
II Лавинопредотвращаюшие  
Системы снегоудерживающих сооружений (заборы, стены, щиты, решетки, мосты), террасирование склонов, агролесомелиорация Обеспечение устойчивости снежного покрова в зонах зарождения лавин, в том числе в сочетании с террасированием и агролесомелиорацией, регулирование снегонакопления
Системы снегозадерживающих заборов и щитов Предотвращение накопления снега в зонах возникновения лавин путем снегозадержания на наветренных склонах и плато
Снеговыдувающие панели (дюзы), кольктафели Регулирование, перераспределение и закрепление снега в зоне зарождения лавин
III Лавинозащитные  
Направляющие сооружения: стенки, искусственные русла, лавинорезы, клинья Изменение направления движения лавины. Обтекание лавиной объекта
Тормозящие и останавливающие сооружения: надолбы, холмы, траншеи, дамбы, пазухи Торможение или остановка лавины
Пропускающие сооружения: галереи, навесы, эстакады Пропуск лавин над объектом или под ним

Выбор противолавинных комплексов сооружений и мероприятий следует производить с учетом режима и характеристик лавин и снегового покрова в зоне зарождения, морфологии лавиносбора, уровня ответственности защищаемых сооружений, их конструктивных и эксплуатационных особенностей.


Смотрите также

  • Доска для кровли
  • Чем отличаются профлист и профнастил
  • Кровля фальцевая или металлочерепица
  • Виниловый софит для кровли
  • Сколько битума на 1 м2 кровли
  • Кровля над эркером
  • Гидроизоляция холодной кровли
  • Монтаж дефлектора на кровле
  • Инструменты для кровли
  • Ограждение скатной кровли
  • Укладка мягкой кровли шинглас

Категории

Информация

Контакты

  • Доставка
  • О компании
  • Контакты
  • Производство
  • Услуги
  • Карта сайта

Copyright © 2008-2020 «Всё для кровли»